
会员
数据分析即未来:企业全生命周期数据分析应用之道
(美)格雷戈里·S.纳尔逊更新时间:2021-01-14 16:50:22
最新章节:译后记开会员,本书免费读 >
本书的灵感来自RalphKimball的作品,我记得当我读第1版的DataWarehouseToolkit(Kimball,1996)时,我在心里对自己说“这本书讲得有道理。”与一般商业和技术书籍中经常出现的大谈概念的处理方法非常不同,Kimball在这本书中为我们提供了真正进行数据仓库建设所需要的实用方法、工具和流程。不管是针对已经熟悉数据仓库的专业人士,还是刚开始接触这一解决方案的初学者,Kimball在书中都给他们提供了数据仓库相关领域的准确概述,以及数据仓库全生命周期和关键流程的完整框架。我希望你会发现,本书能够不负这一灵感,它为数据分析生命周期提供了一个全面和实用的指南,并着重于为你的组织打造行之有效的数据分析能力。
品牌:机械工业出版社
译者:陈道斌 万芊
上架时间:2020-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
数据分析即未来:企业全生命周期数据分析应用之道最新章节
查看全部- 译后记
- 13.5 参考文献
- 13.4 最后的一点思考
- 13.3 未来主义者的视角
- 13.2 分析在未来世界的作用
- 13.1 数据分析的生命周期框架
- 第13章 数据分析未来趋势
- 12.5 参考文献
- 12.4 本章小结
- 12.3 基于知识领域的分析工作岗位序列的理想胜任力
(美)格雷戈里·S.纳尔逊
主页
最新上架
- 会员
商业分析思维与实践:用数据分析解决商业问题
本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字 - 会员
分布式数据库基础与应用
本书是一本介绍分布式数据库基础内容与应用的大数据专业类图书,力求培养读者对分布式数据库的应用技能。本书共11章,采用原理+代码实例+综合案例的编写形式,清晰明了地介绍分布式数据库的原理、基础应用、进阶应用及主流工具的使用方法、应用场景,以理实结合为编写要求,让读者能够轻松学习和掌握分布式数据库的内容。本书可以作为高等院校计算机、网络技术等相关专业的教材,也可以作为数据库相关工作的从业人员的参考用书计算机14万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
企业级大数据项目实战:用户搜索行为分析系统从0到1
《企业级大数据项目实战:用户搜索行为分析系统从0到1》基于真实业务场景,以项目导向为主线,从0到1全面介绍企业级大数据用户搜索行为分析系统的搭建过程。全书共6章,第1章讲解项目需求与架构设计,详细阐述项目数据流与系统架构;第2章介绍大数据项目开发环境配置,手把手带领读者配置操作系统、Hadoop集群与相关工具,为后续项目实施打下基础;第3~5章逐步实现项目需求,第3章讲解用户行为数据采集模块的开发计算机9万字 - 会员
数据分析实践:专业知识和职场技巧
《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。计算机19.6万字 - 会员
数据指标体系:构建方法与应用实践
这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着“一切技术都是为业务服务的”这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影计算机12.7万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
Python数据分析与挖掘实战
本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字 - 会员
数据挖掘竞赛实战:方法与案例
本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字