
会员
TensorFlow机器学习
更新时间:2021-05-18 16:56:08
最新章节:12.3 总结开会员,本书免费读 >
TensorFlow是Google所主导的机器学习框架,也是机器学习领域研究和应用的热门对象。本书主要介绍如何通过TensorFlow来构建真实世界的机器学习系统,旨在让读者学以致用,能尽快地上手项目。本书的特色是通过实例来向读者介绍TensorFlow的经典知识。本书共有12章,包含手写识别器、猫狗分类器、翻译器、文本含义查找、金融中的机器学习、医疗应用等多个实例,完整地向读者展示了实现机器学习应用的全流程。本书适合想要学习、了解TensorFlow和机器学习的读者阅读。如果读者知道基本的机器学习概念,并对Python语言有一定的了解,那么能够更加轻松地阅读本书。
品牌:人邮图书
译者:李晗
上架时间:2021-05-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
TensorFlow机器学习最新章节
查看全部- 12.3 总结
- 12.2 利用Anaconda管理TensorFlow
- 12.1 安装
- 第12章 高级安装
- 11.6 总结
- 11.5 TensorFlow-Slim
- 11.4 Caffe转TensorFlow
- 11.3 有趣的项目
- 11.2 TensorFlow项目
- 11.1 数据集和挑战赛
最新上架
智能汽车软件功能安全
这是一本从实践角度系统且深入地讲解智能汽车软件功能安全和智能汽车软件研发的著作,得到了中国工程院院士李克强等13位产业界和学术界专家的一致推荐。作者在功能安全领域深耕10余年,有扎实的理论基础、丰富的实践经验,用挖掘本质的思维方法来撰写本书,从研发体系、架构设计、开发流程、开发方法、安全措施、创新研究等维度对智能汽车软件功能安全做了深入的讲解。全书共11章,分为3个部分。第一部分(第1~3章)智能计算机25.9万字- 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
深度学习时代的计算机视觉算法
本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快计算机9.9万字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
AI原生应用开发:提示工程原理与实战
本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字 - 会员
贝叶斯算法与机器学习
本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。计算机0字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 制造业大模型的构建与实践
本书分两篇,为读者提供基于制造业视角的大模型理论与应用指南。基础篇深入大模型理论层面,主要介绍大模型的基础知识、构建路径、价值对齐策略,同时涉及多模态与AIGC技术、提示词工程的相关知识。应用篇则聚焦于大模型的实践应用层面,主要讲解垂直制造领域微调、RAG等构建技术,AIAgent的原理与应用,以及大模型压缩与部署策略,并且通过具体案例来展示大模型在工业制造及设备运维等方面的应用,最后对大模型进行计算机18.3万字