![光电信息物理基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/268/655268/b_655268.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 矢量微分算子
1. ▽算子
▽算子是一个微分算子,同时又是一个矢量算子,具有微分运算和矢量运算的双重性质。一方面它作为微分算子对它作用的函数求导,另一方面这种运算又必须适合矢量运算法则。本节来说明 ▽算子的运算性质,并给出一些常用公式。必须指出,虽然作为例子用直角坐标系给出了一些公式的证明,但这些公式的正确性与坐标系选择无关。
我们已经给出 ▽算子表示标量场的梯度、矢量场的散度和旋度,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739301692-93beiXxMbqw8AuYFdJ2w0IodulkygxjV-0-7b8e3b561eb28a5d8e5486a1157631d7)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739301692-NnqzOzD76dpY3ypgVH9FO6CjCZZZAP7W-0-934fa7b700efdd5fcf94de96998db7ff)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0006.jpg?sign=1739301692-9lGacZNXxeQlmC44kNksmSsQDBwMTRCL-0-096de5983597ba6e262fa4e6208835b9)
▽算子还可以构成一个纯标量算子,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739301692-mSnkOpL91bBlxUdkPRwdAFpy0aG1IZJg-0-af178bfa9430f9d3f8cff24f9151f958)
称为Laplace算子,其可作用在标量函数和矢量函数上。
2. ▽算子常见计算公式
(1)设u是标量场,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0008.jpg?sign=1739301692-9B5rbMFrcvLptxO9KuAr8ZrG2NLUE57E-0-c252e7b20060d56f9b28f106588d4078)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0001.jpg?sign=1739301692-oEmlRVZg7C2haZKBQVb1FM6Kp6cdEmBf-0-6043720ee076f6582410f1e5ee2ec7d2)
(2)设u和v是标量,A和B是矢量,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0002.jpg?sign=1739301692-BGAhiGYXvlT2WU6gK6jwWSYtU2Lz7efg-0-219caad15a6e7521914e8bfb8eefc857)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0003.jpg?sign=1739301692-6Wrim9H5tFUeIbzxNAREdlW77y8M4rua-0-47bb87f93d62033c0742f612f6301fb2)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0004.jpg?sign=1739301692-EIuXG5u4xw2aR12Sa6Ys8f7V9kJFKDt5-0-97ce6c3e0a088cd7d68ed9227c0cbbba)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0005.jpg?sign=1739301692-fZTUvcCdGxYK3E0wsOVheaKFTD1bVjmT-0-8cb48a63d8690f3930a306af9f8b64bd)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0006.jpg?sign=1739301692-tqLhBG5eShTKopXHjStcyx7KSXLrO74R-0-a232a2403e7d9d7f69224c0e1429ddf8)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0007.jpg?sign=1739301692-QBDeGo52NsVXGoI6y1LVTLqOkxv4FJyS-0-a0fd451d82e00e1b4121420baa6f0881)
(3)关于 ▽的二级微分运算为
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0008.jpg?sign=1739301692-WJXNXN8p2VkIksZ5alCmWqkIwGxIdYqs-0-1a511d9968166c499b4fbdea830448fa)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0009.jpg?sign=1739301692-iy12WexFsqtqqCt0Ni2Fm5JBFo0JvCOD-0-716dd2ae5bc03b0a68b6456356e57497)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0010.jpg?sign=1739301692-q1fS2UXylfU5vCTbGjCtH9Kht10VvOFW-0-ac5c01f6b8f94ead52f6f2dc5aaac2ef)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0011.jpg?sign=1739301692-AEfgoYpLJyACPnkLHfImxNlP51HwX3xV-0-bde5e3afc7ccbc4d50e484463222d908)
3. 关于场源的一些常用结论
设有场点为r=exx+eyy+ezz,源点为r′=exx′+eyy′+ezz′,且记
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0012.jpg?sign=1739301692-m7VqV27De4KG6MgNBWnTgUXqdqRdT2ac-0-3a4263d0d334e9fa7e911e24513d6d2e)
则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0013.jpg?sign=1739301692-5u5pGMQXYlvMfpIO4sF5YKqLLg6Uw9Ke-0-e2990b1c8b32c5c3cc805bce3e13bf12)
同时有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0014.jpg?sign=1739301692-2ecF0VWUsT66yK1OLfDkNRCOmJtNunv7-0-212eb8467507525fd1b0a393d255d6fc)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739301692-QM0AJhsr8YyuNMb9to0NwudDJW02Bz1f-0-ce39db650496ed8218801eca9a678314)
4. 高斯定理和斯托克斯定理
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739301692-RyeA8lMsoCbAN3bvGIt41WzjI2E5qGAy-0-bbf0f99d0002222aab9da1af42e69826)
【例1-4】 计算下列各式的值,其中C为常矢量。
(1)▽·[(C·r)r];(2)▽ ×[(C·r)r];(3)C· ▽ × 。
解:(1)▽·[(C·r)r]= ▽[(C·r)]·r+(C·r)(▽·r)=C·r+3C·r=4C·r
(2)▽ ×[(C·r)r]= ▽[(C·r)]× r+(C·r)(▽ × r)=C × r
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739301692-c9f552pPm55pX3dC1IA0KkC8PzoIbvmx-0-9cecc91cfbdd9b4941d500d831435c4c)
【例1-5】 求 ▽2 eiK·r,其中K为常矢量。
解:由
▽eiK· r=eiK· r ▽(iK·r)=iKeiK· r
而
▽2eiK· r= ▽· ▽eiK· r= ▽·(iKeiK· r)= ▽eiK· r·iK= - |K|2eiK· r