![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739313215-waQEOrQvmWv0ACMdw6Rx1sVkWLTM5K2Z-0-46436432473c21190aff47168a49549a)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739313215-VDVdDkDOEIqc9JPDg1tEBnDM4IUILE06-0-5ff331b5b5d925c762c083642396272e)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739313215-rBgmMpht3ySk6cTBdnTYRqX6PFRwkzfG-0-dacf93d8b31fcb938a463b3c183512f7)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739313215-cSKATSfNCdNF5Ij2z5oW37VUZNug30gi-0-ebcd0d32347f9c040a6930fbbd110570)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739313215-pBqjoWkt58ObE0TZgpuWcT7ocwHWgZHX-0-ccdbfc473610fef940070b30a3d97d91)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739313215-40n1YTV7qNelZSAc6jekXuf87N1bausA-0-6a188941cfd3e17032d833819f7d1e9a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739313215-Yt5MbmntpMbFDEC97G5tVafcNVSBmRnN-0-35d482f27e65852aa1900a0e589b6aa9)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739313215-TGpOfY1g8iy2yfSwT7GtnlDSPAWieUpM-0-ea70688cd185f4155741ffe120220a50)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739313215-VUljwcTlQLVKdd0THYmuOhHlJMZRG5nx-0-56e503b065b677dd7fb107bf5fc625a6)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739313215-hRED3s7JHWi0o6yCrLbCYI6suMRXbF79-0-7447b4e31cb6ee0537b0d097c6ccba99)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739313215-m8oZsY16eKwky5zhVFoLPXG0MfW87phn-0-756e3f5da6f2488db58724780fd46732)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739313215-HdEZGeey0HdnDPHqt1tc6pvhN0LvMN06-0-37bf8bc3fd7772ee0697a45a0cd1a05c)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739313215-Ah66uqItx9VpH43KjpnkYxWzKC6VIggg-0-91b1da876b4a0496505e3d1ad6fc3570)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739313215-ct3NKEjcbSvGRDxpGNeaJ8ldXXSp0ALy-0-1a203d8e38a146e53b75ab70d992765b)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739313215-lhq92By4MCDRD8wyxcM810VhkwXOnls9-0-d1f5ed39c56022e3157777ab19f442f8)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739313215-zVzhsXmUrzpWgowSZ3n9vF8ukLhxEp6u-0-b557eb33292442bc9679b49ff44e3583)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739313215-pNAMqbSZC1h757oO3jZmZ3BG7XVzYDFc-0-cdd64190fc7aca1a0c1a0d636fb17622)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739313215-7B8HUyLmlZSBaNzkIluf5esfHjMjIwMd-0-7f090f848a7d78945949eac5ae46d2a8)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739313215-OC0wSxPKQVqYRUJS0nd7fe27DRrrDF3S-0-d155a61b6c5cda56943db5cca987cc01)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739313215-gX0Daw183T6LGpGjGWemlVPaqhv8AKfL-0-cf5f251ac210efe934e9170dcff44707)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739313215-a0YqmPeeXrN5PxheHHgCpRSgPjcGnhuU-0-58a334ca712c50f35ac6e9cd5d5f9c0e)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739313215-BbpEY8BZVfzjVJ2db3Yzt4fsshoiXzso-0-499edb23ecd7497af527568d147441b6)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739313215-Lh11gLscHAQYOSo0OipGGvXxPXaJrQCf-0-6718c5e6823f26e0561c861d6a3ba109)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739313215-WyMxyRJwsxIZrSnD1ZaV0r5zrOlaDHzQ-0-e070fbbd21aed2609f1c83b080595976)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739313215-tQXs1WB888YJHzDJ6mFjk4DtnjjLjYlM-0-f69f6f6486142d8c90eb1cc5a99268f8)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739313215-Q5R2kf35mConkh7MyZ2PFXnjVI6MTeIO-0-b55b7491a2bd7d04fe90bd0861b694c0)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739313215-NgHo5jwQrEXRVF7JauZyrw1G7ZtRN7wx-0-dd7a5d65f0b64c183c4b2e04ef3c8764)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739313215-4KgEE97AZ1Dal7XSmR8sWO91Y34YDor8-0-ddd558f30f27648f16c285cae0dc2473)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739313215-5GxnbJnElCH0eXjDHikQzGXs3Ib3LZWj-0-2109ff35cc67d39eca56557f21817d46)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739313215-wxknCfhSXGAA0Tf042wp2HG1dEbaXFPy-0-82f87f08e6164d2a45043fb2e3aa4890)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739313215-78nbyuFUm7YiRWsX78bVjoCh8SEMFYst-0-75f8b2d2f25ab98b4efa402dc78ec85e)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739313215-L4paFFqoGtbZFpWTs15cwsDJxJam5y5U-0-75e46440aff48438a1485f40756648e4)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739313215-sGUWt0BXHsI8ghiXxBCNgKiPpjeY6FJK-0-6df7ff56a3fb3cf1ca0b386cce89c8d4)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739313215-7r6q3vDfXryrsAetT52wnVbENtIphbV6-0-accd244aa9f637eb1ca395b8e682c113)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739313215-4mZ5Y4j1q9t8HFlq0jVlmPmkUwXrWugd-0-ef3f070dc1e861cd857e7744976d1a65)
上式式表明相空间一个体积元h3相当于有一个量子态.