![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739313326-gNKIr7NSFphZoosaq1wT4nIfZgAOlY1d-0-a7550cc330cb74a6f16ff1ecdb28e5c1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739313326-hq7KrgF8VVd24IOscTK9eoY4iYvnwPLh-0-eb0770aed1da37cd79409e5af4d5a798)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739313326-9C6fzoCSl5YFr5JTus5IZcRgdobP38dy-0-0f3ac8b9afc9e76b85eef9fb3dc638c5)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739313326-hULgsEBYf3xxJDXd1oYoksXCt3JHmCoT-0-10432821bdf8f81523d0fc976f69ace9)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739313326-BJtQQETVE6Sgzvx3hRfw8bK2sNQqoPTM-0-b81a334a4455f6b54144074afab86e1b)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739313326-h89a8CbdsBKORAfVHa97vWDs61cowytz-0-a38d929f87100e5a65b1dfd413349a15)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739313326-VuMQdhATFNyvL96koFvXS6pA9KDY8k3H-0-b05c563f0744fc1405126b760f0d02e6)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739313326-Rjj1jlsRaKR5KUHhe53LFO94uqHeXinl-0-0b24940ad97ee512f6b4ff316317fdd7)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739313326-DnuHn61Ki7fEWeFDXiCgy8bInw3Of9SB-0-1314ec09e3b1d3766d270f92dd56bc85)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739313326-vamiKf7Upqqo0uSLPi2PfKoPlYsdWe3I-0-6f9e153d16860971c0b4ebb4a4d90d58)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739313326-gG7bquYVtPiUrBgeyMQzht7dnzXbtV6U-0-c97a3e102dffdc2fcec9ba65179ee87b)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739313326-Cs0nyRkMqJXF42D483AFtp1m9KBC19BL-0-b9e9d2dc3c3b3138b24cbcc518549854)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739313326-ceB3YNOGi7piqia1ZUhumVV58L7rVxFP-0-db4dad1adfd1047d9dd64a77263a3100)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739313326-j4dSBlvDpX3rZUgO2jzI07h13UvUfwPB-0-3381e9a153bc05d51c7817bf6a7d07c3)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739313326-KkXIY14QYPZLdCCRYTYlXfeVXXseRheL-0-0f904f61093c465cd151902a4be34141)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739313326-5BbDxP5Z5msnzJjSPv9Ex9fcK4Y9nVPM-0-5802d875508e0557553ce6c7412e2dd0)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739313326-8D2XXd3Z6ccHaB9n4Yfoa8pViNcVdF1J-0-954410a03704fd6d9f80f577cb37d1ba)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739313326-USEsfMzEhLmp0m30zTczaTQgZi4e1mTY-0-e7acaeaeda1b8647334eb81c12c9cc48)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739313326-zO6EOSAseOGNuOKp3nAEJ38cfTSWAYlV-0-35b0d7a0d80282c599b3131c4a026ec0)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739313326-sCuWiVVThq9jkhHqfZQ0InKGdpDjIiVc-0-f2260eb3c17b744bcff25183baba97b1)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739313326-Ln7fWKRGbqpitX4CXqfag24lxgORflPo-0-d6aaefea89eb5002f64ae42b994cfb04)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739313326-CfiAbDfNJX6w697ZSdSmeUcAS0ssApWn-0-001f09885fd75aad5ba3774436c9f7ef)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739313326-dSUtd0ZAdGnUPCYFtY52Ze93Iw7KIwkC-0-299aad477648ca4532571bd6a80c4861)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739313326-IzVTXiQqecRXDriLjXrRlUMBKNVZtxwa-0-3f9294b5f4244aa379866351903b751f)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739313326-A8cVZ8919TiL15ivELtEwrdDvFT96V5S-0-b6a47bf453cae5e88487d029ff8e1d2a)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739313326-3DKMUq5esrjOKTT86w0wHq1NcEvhzHRb-0-3b085f6521863e13935b206aa4a6d37d)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739313326-F4DL6BAI22GE1oshB7bxQPNVMcHJi66H-0-2578ac01eb938d780f229786a870ac96)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739313326-V79dNh5GG38RRskO8h4XBjee84CM5fuH-0-d2ac41064ee3ec169a00b98c0c4cd66d)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739313326-4CUblYmfjQ8smMmTn0xKRwfKJf37Btxd-0-f45c34b8d6497fe1137ea32fd3a57a0a)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739313326-37Bawuu0SzCOfQNyO45QMJruHRoowVV4-0-66ea7a80bf250b98e8383c740283ee09)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739313326-SNMJwbacAih0O550PC0G5naniOWHPhSy-0-e6427c78bab359a668fb3080809976d1)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739313326-tfDhpV3LObPpFBLYhuwxMonS8YoN1b9g-0-ea331d316b4bfd74a84320d91df2500a)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739313326-9utfJJkmXDtouo43R0pQQT9hpNMy5Hbu-0-4bb5ea700924002a2372e866e033ed7c)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739313326-netMnhokcMDFO68npWijvozbDMocxU8Q-0-1943288787d15c12c646921e5b7a2c33)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739313326-veqUnaqWHqUvMKIwxTcui74cFnUelGxk-0-b8b3faf1748d9db12ddcf9116d8cd60c)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739313326-ExIY6uGCXonRh0eGb5glynjECCAeWHGT-0-3b0415c42a1a7a3bc8e29f2718be2259)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739313326-kqRv8OPEo01UKa7zkAMsM4MxtenLQIlp-0-41b2865da07ba78d7580de1ec98c9233)