![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1739313002-qdm16RvRYeqyWcQHDrGWeDPmiS3HWDK7-0-66a367dc31fe046283596984ffd22962)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1739313002-FbVG6EMUD8PNdHaaCXc7UGgoJTgKBl1Q-0-950ff170fbcf5ab6b8ef86d9af9a8f68)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1739313002-VBbY1T7XPy9o5oZc0mAL8UE2R3EoSQ9N-0-bbec58107afb3f62903c059322bad819)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1739313002-gtBjf7m8tVouZAqaygnYqjsY9VdK66mR-0-523776b861a4ee88e5d36770fedcb443)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1739313002-RafjmB6xuF35eNAu3Pd9OXc5dzEGTBP6-0-d9cc117ca71aecded02015fb61be38a6)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1739313002-iKdxMxIEQRa66VG32fRJY1owRtm5vQdS-0-31a7a26f1460fb65b78be507e772c964)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1739313002-u91h0E0TzlSZMaU3xB1teXbDMsIsFyyN-0-4145a817077625eea5d8f1948733497f)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1739313002-nhXAURx4PuEI0Ucmu2jH8YmP3amNVK53-0-e954f9d6781a17a788cbe484395bc381)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1739313002-r1h5GTEltnCSALGeL4zQS9394usXiK6Y-0-7dac1fb4f3377968e5fa9e6149fdf543)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1739313002-hYxMK5VNQWc7vVEaE5nIsiwdOyQheVcr-0-94e4914859bb9d22d12f086a2dd79c6d)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1739313002-BqZ1BENYT4c9VHTEn7BtEauKq1C6qFUv-0-af921092349411358dc514df4204cbeb)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1739313002-lL6ivxWI8ZxApkPucOGWCffzLiNXCXTs-0-cafcc34bcae167178f9ed34aab2fe30f)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1739313002-vRVBOD6zSjzPbYxqSH6KHxJOFXS625Uo-0-a365689ed5893d9f53d4a637b54ccb09)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1739313002-dljtoWs8lSN7isBLKJmzdZtGUwa977gl-0-15556d26d3a3801370986add396dfc47)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1739313002-TchWVv3H1BhRznZD5dbFJ0HramUVlTMg-0-34e3f80df47923ca81e40fa3f43f796b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1739313002-3z0PATJlX7sbZLNBkL4BYddHzTsEy6cN-0-a578403e4abc94c2928972f1ddea974a)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1739313002-vzBxQwaJPgSs7ORD8LRD9SDtUO9ga6o7-0-94a3c014cea42d0b4737ddcfb1d48150)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1739313002-L8RNSzPiGDWRkdqCT2W3h3BWt7c9xByl-0-e6175e9dcad2cfd0975e71126e87e0be)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1739313002-aoCf2gG1wMT9RrgoK006b4u4uYb2xKDb-0-2d48925cd4190a834925c6a4669d308c)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1739313002-DGfsP9C9xjFIlVVrexCx0DPQ47NgiaEI-0-537a65171f68b9bf27632ae094eb31f6)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1739313002-CziITEPWUwGy2WXBWh5XURlvhSnyaXvH-0-57700ac845263c10b174ef0fde994c94)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1739313002-9dXiHoIkoONjptDx80tfZnw7Z3bLpYGe-0-5ae7391439bbffefc5c080a4e34b7a52)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1739313002-WMZc1DaCpyv3L8VGVdvv8ciAmG6OxDvI-0-47b0bd1100597c1b3372f191a083a3e3)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1739313002-cvoY7gXBHM4v6EEZPNJa3zGnH9e55gCf-0-26c93bd38a4b6d7f6591dd74c77816dc)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1739313002-AiPdBHAQUqhDubbwRbKKqdwzwi0m7jRV-0-5bd70ee37795deaab7061d2064ef3214)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1739313002-dE25jVvgKFVDDd4JSO2Ru17fa8hwUQbp-0-4bdd17bbcb5195b411ca4539ae82556d)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1739313002-09wWPO2akdMbJN49KsxZ9o20ozqburDN-0-72078f607285614010f38052afb1e9ae)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1739313002-rHJ5Ny9mAacL4Rgv39mViZkDGR6RYl5p-0-f38530d2213e2306278d124254da5552)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。