![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第2部分 函数项级数
第11章 函数项级数、幂级数
11.1 复习笔记
一、函数项级数的一致收敛
1.函数项级数的概念
(1)函数项级数定义
设是定义在实数集X上的函数,则称
是函数项级数,并称
是这一级数的n次部分和.
(2)收敛性定义
如果对X中的一点x0,数项级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1477.jpg?sign=1738869366-7mlqkO25Q7LGTlAOWhg01AQ56EeNYkge-0-d2cb09f998c08a4b0289d4a7e1081e84)
收敛,就称函数项级数在x0点收敛,否则就说它在x0点发散.如果对X中任何一点x,级数收敛,则函数项级数
在X上收敛(即在每一点都收敛).这时,对每一点
,级数
有和,记此和为S(x),即
可见,S(x)是X上的函数.
2.一致收敛的定义
(1)一致收敛的定义
①设有函数列(或函数项级数
的部分和序列),若对任给的
,存在只依赖于
而不依赖于x0的正整数
,使
时,不等式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1489.jpg?sign=1738869366-UO35IRDvQMsgDJRzepUdMzQg9FT6pxbY-0-4aa42f53afc632de5ed6718a6a23ce83)
(对函数项级数,此式也可写为)对X上一切x都成立,则称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1491.jpg?sign=1738869366-uAYZfQ49vAOhLo8wgny664Say5Qb5cqm-0-2b22750cf290127eb700fc8067232814)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1492.jpg?sign=1738869366-T5DK4VMTUdBrL0zaQHH0I3L5NQBvLp59-0-76996c776d6af4a80f6301b6d039cba8)
②设如果
就称
在X上一致收敛于
.
(2)内闭一致收敛、收敛、一致收敛的关系
①当在(a,b)内任一闭区间上一致收敛时,称
在区间(a,b)内闭一致收敛;
②函数列在(a,b)一致收敛,则一定内闭一致收敛.但反之不然.但在(a,b)内闭收敛,则它在区间(a,b)也收敛.
(3)一致收敛的柯西充要条件
函数列在X上一致收敛的充要条件为,对任给的
,可得正整数
,使
时,不等式
对任意的正整数p和X上任意的x都成立.
3.一致收敛级数的性质
(1)若在[a,b]上,函数列的每一项
都连续,且
一致收敛于
,则其极限函数
也在[a,b]上连续.
这个定理表明:在定理的条件下,对[a,b]上任一点x0,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1510.jpg?sign=1738869366-ASYn2XCqbQyk48Ys5OH7GeRSIo2HMJgk-0-d4e3efbdf8436903d52eb8a02fe4760e)
即两个极限运算(一个对x→x0取极限,另一个对n→∞取极限)可以交换顺序.
(2)设在[a,b]上一致收敛于
,每一
都在[a,b]上连续,那么
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1514.jpg?sign=1738869366-effkWiDScjKwIA20Y7AUDonDsZpX03y8-0-fe4b362ff39a60fb62045099cbc2efe7)
亦即极限号与积分号可以互换,又函数列也在[a,b]上一致收敛于
(3)若在[a,b]上函数列的每一项都有连续导数,
收敛于
一致收敛于
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1521.jpg?sign=1738869366-88om6KMB99L1bgt4NxyQo10moYYk31Fi-0-b6533c64c8e68e5a5ca4e2da063533ad)
亦即
也就是极限号与求导数号可以交换.又此时在[a,b]上也是一致收敛的.
(4)和的连续性
若在[a,b]上级数的每项
都连续,且
一致收敛于S(x),则S(x)也在[a,b]上连续.
(5)逐项求积
设在[a,b]上一致收敛于
,并且每一
都在[a,b]上连续,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1530.jpg?sign=1738869366-bbaP5k8uAw9QcQvM1DyRNm2JSG1umRZ0-0-3c56fadf3740eafdebf0df79a1995044)
亦即和号可以与积分号交换,又在[a,b]上,函数项级数也一致收敛于
(6)逐项求导
若在[a,b]上,的每一项都具有连续导数
,且
一致收敛于
收敛于
,则
,亦即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1539.jpg?sign=1738869366-vgAZ3Dt1ste5MIjhq2ZKFlbwyZfRqwe6-0-bbae3582c234121bd112711d3e8dd896)
且一致收敛于S(x).
4.一致收敛级数的判别法
(1)魏尔斯特拉斯判别法
若对充分大的n,恒有实数,使得
对X上任意的x都成立,并且数项级数
收敛,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1544.jpg?sign=1738869366-uB0ilMR2Pv3GizduvsVMNCFi1kVcCMQn-0-9fe48047746493d86e05a65bb47b1f0e)
在X上一致收敛.
(2)阿贝尔判别法
若在X上一致收敛,又对X中每一固定的x,数列
单调.而对任意的n和X中每个x,有
(不依赖于x和n的定数),那么
在X上一致收敛.
(3)狄利克雷判别法
的部分和
在X上一致有界,又对X内每个x,数列
单调,并且函数列
在X上一致收敛于零,则
在X上一致收敛.
二、幂级数
1.收敛半径
(1)幂级数定义
形如的函数项级数称为幂级数.它的部分和是多项式,它的一般项为
(2)收敛半径定义
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1556.jpg?sign=1738869366-x3L8AVbdqS5bsaa6PE75UyDghDR4OfjF-0-4d1a101a6bdc2f14d9de93a406099d00)
R叫作幂级数的收敛半径.
(3)相关定理
①柯西-阿达马(Hadamard)定理
幂级数在
内绝对收敛,在
内发散.
②阿贝尔第一定理
若在点x=ξ收敛,那么它必在
内绝对收敛,又若
在x=ξ发散,则它必在
也发散.
③阿贝尔第二定理
若的收敛半径为R,则此级数在
内的任一个闭区间[a,b]上一致收敛,也就是在
内闭一致收敛;又若级数在
收敛,则它必在
一致收敛.
2.幂级数的性质
(1)设幂级数的收敛半径为R,则其和函数S(x)在
内连续.又若幂级数在
(或
R)收敛,则S(x)在
(或(
)连续.
(2)设幂级数的收敛半径为R,其和函数为S(x),则在
内幂级数可以逐项积分和逐项微分.即对
内任意一点x,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1580.jpg?sign=1738869366-LkTzceKV55bqtrlo1UId79lQvk2EBYWS-0-042894c866e18a2dd57d6410a05a656e)
以及
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1581.jpg?sign=1738869366-TCRSYOD6mFGcSO39bfLaPducW27NySAh-0-53605095122f0e5122d96af4d399f889)
并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R.
3.函数的幂级数展开
(1)假若函数f(x)在某点及其某一邻域
内能表示为幂级数,也就是在
内恒有
那么,它在这个邻域内必有任意阶的导数,并且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1586.jpg?sign=1738869366-PsA474jQQKv6D0pgkcJ11eCIS6fTwH6f-0-d65aab93824f8795f5e93ebd3f4c108c)
上式右端的幂级数称为f(x)的泰勒级数.
(2)如果f(x)在点的某个邻域
内有任意阶的导数,不一定有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1590.jpg?sign=1738869366-bG2bLuG5pePUq5gnaVp7bp6jK1xUrj2u-0-85dff8732b8a48acaed37d363a8a7251)
设余项
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1591.jpg?sign=1738869366-Vn5TJMIFoPqNy7WqaANQcT5Pp5f5QN8G-0-a14df4cdb9fa3cc0f6474f8d246ac1b2)
只有当余项在这区间内趋于零时,一个任意阶可导的函数能够表示为一个幂级数.
(3)余项的各种形式
①的拉格朗日形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1595.jpg?sign=1738869366-BVJvjtrBKfq6uSQZ5QODYh1IqbYJkPnW-0-800391acaed96e61935ac9220ef98c70)
其中ξ是介于和x之问的一个数.
②的积分余项形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1598.jpg?sign=1738869366-s9KWSyxY4acnm61JSXg5AQmbtT14fiTB-0-c472456588a8aed04ccec2a16da2ce68)
③
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1599.jpg?sign=1738869366-paBstCCj4OlHbRfBRer4zhpVm3LnCNBc-0-a97582a9253f7aa5bb01e2da4a4e2115)
其中ξ为,x之间的某一值,这称为柯西余项.
(4)一些基本初等函数的麦克劳林级数
①
②
③
④
⑤
⑥二项式在-1<x<1内,恒有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1606.jpg?sign=1738869366-2Ru8wToTYlGpw8EkzAZ73pQqwZeQ8QMK-0-8887c0b26fd6cb3d87015f5f9f239a5a)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1607.jpg?sign=1738869366-YmrzoTDMCAfH7sATvZwyfZD7AtDS1m7T-0-699e875bdfadad1225b33f17f0288c39)
三、逼近定理
魏尔斯特拉斯逼近定理
设f(x)是[a,b]上的连续函数,那么对任意给定的ε>0,总存在多项式P(x),使得
.