![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
9.3 名校考研真题详解
一、判断题
1.若收敛,则
存在.[重庆大学2003研]
【答案】错
【解析】举反例:,虽然
,但是
发散.
1.若收敛,
,则
收敛.[南京师范大学研]
【答案】错
【解析】举反例:满足条件,而且很容易知道
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image740.jpg?sign=1739301811-bhrOXvidaDmZKlUz1S9t35vZiyPH5stv-0-77f423d3fd48ecda8a137a5a61ed19e2)
但是发散,所以
发散.
二、解答题
1.求级数的和.[深圳大学2006研、浙江师范大学2006研]
解:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image744.jpg?sign=1739301811-8BiGuxRqQHC6CvEE8FdXyc4T9cugGSf2-0-0c740f627792367929d4b80525edac74)
1.讨论正项级数的敛散性.[武汉理工大学研]
解:由于,所以当a>1时收敛,当0<a<1时发散;当a=1时,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image747.jpg?sign=1739301811-N55Z4nI86S1yuoZhe8OOr4k0RTp1MLdx-0-bdf9ee0f216c552455fbb3bbe0b5a00a)
,故发散.
1.证明:收敛.[东南大学研]
证明:因为,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image750.jpg?sign=1739301811-WpW0g3id052CUUZWo9qSExxtimXPlXUd-0-bb962e077b416043cd64f234234fd1d3)
又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image751.jpg?sign=1739301811-8oK3hcvZOij0IMrlNn1zemPI2rCmDbWH-0-6d5bc617ddf2331af2f9853560548f8a)
而收敛,故
收敛.
1.讨论:,p∈R的敛散性.[上海交通大学研]
证明:因为为增数列,而
为减数列,所以
.从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image758.jpg?sign=1739301811-N49mUtjY91LTyxpDL9izjpSIowbEOC7z-0-dd256978a307121d743a495602121f8b)
所以.于是当p>0时,由积分判别法知
收敛,故由Weierstrass判别法知
收敛:当p=0时,因为
发散,所以
发散:当p<0时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image764.jpg?sign=1739301811-EJK6enuFeF1XuAENb5NUYLeDGHbqSRbi-0-24662f406e4978298fb07efb9e99cdd8)
发散.
1.设级数绝对收敛,证明:级数
收敛.[上海理工大学研]
证明:因为绝对收敛,所以
.从而存在N>0,使得当n>N时,有
,则有
,故由比较判别法知级数
收敛.
1.求.[中山大学2007研]
解:由于,所以
绝对收敛.
1.设,且有
,证明:
收敛.[大连理工大学研]
证明:因为,所以对任意的ε,存在N,当n>N时,有
,
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image780.jpg?sign=1739301811-qfJR3AjCPdPyXlflF4Vah3Gd0WWjmicN-0-cd5fc18798f8778fab404b84b60a104e)
取ε充分小,使得,即
.因为
,所以
单调递减,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image785.jpg?sign=1739301811-YGzSdeQrkSUWl2ybj0GecyjBgx8uYnsU-0-854bfeea4f0e7b98a9171aed48966b59)
现在证明.因为
,即
则
.
所以对任意的ε,存在N,当n>N时,有.对任意的0<c-ε<r,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image792.jpg?sign=1739301811-chFOamPZz7xKStqsk9NKDAKX8hLRjd7s-0-4bb31425e2611484c861f99f3a5808e7)
所以存在N,当n>N时,,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image794.jpg?sign=1739301811-DB7eaztlQBkD1sSFt5t8xlmVToVWBrLl-0-09aafe72052d7362328177f59d6801d7)
因此
,
由两边夹法则可得.故由交错级数的Leibniz判别法知
收敛.
674.说明下面级数是条件收敛或绝对收敛[复旦大学研]
解:数列是n的单调递减函数.且
由莱布尼兹判别法,可知收敛.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image803.jpg?sign=1739301811-yoyNZhNZTK0swiQDVJT3dGaFkVPEiHSb-0-67b39b760e3017abe0c3e9e7b6a62364)
所以
故当2x>1,即时
收敛,即
绝对收敛;
当2x≤1,即时,
发散,即
条件收敛.
671.证明:若绝对收敛,则
亦必绝对收敛.[华东师范大学研]
证明:绝对收敛,从而
收敛,记
则
由比较判别法知敛散性相同,而
收敛,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image819.jpg?sign=1739301811-aeidZu32BgMHxKuNgjfmIESzwski57Hs-0-0c3a32a111fa85c7cd9c240401f040f9)
收敛,即
绝对收敛.
655.证明级数发散到
[吉林大学研]
证明:令则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image824.jpg?sign=1739301811-c2lLtKAVdmlXXRW64d2cVlj6On5l24QV-0-4b3cc49d79a92924145ef13b29cba766)
易知发散到
所以
又,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image829.jpg?sign=1739301811-pTG5aOZVjDJyMV8ZUJrcFjWxS0KvULD9-0-e3a0172808f6ff73b8d99b5fb28fa0fb)
所以原级数发散到