![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1738833272-0jbaXdZIQGrp9YreipBb8JgRTdhHswhp-0-0fd4f5383f5ef16f2eb92c01406afa69)
这个比值称为函数的平均变化率,又称差商.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032007.jpg?sign=1738833272-a5Ubj9XovBdWDj1MGgR5XOFmS861Cq0H-0-5e6c3672a8293882ea5e12d6e9aee8b5)
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1738833272-RyJ2se6JAeks8PRW6rTo26HL1N7Bw6Z4-0-c87ed1569cf6c66196e0c9978884c1fd)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033002.jpg?sign=1738833272-F9XX2edr78TLKLZO6zvGihLXKBTnkew4-0-00035f11d50c36e2b6fdea5e0bdb6dd0)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1738833272-wXwi6SVM1sPnXg1zUdv5cbZpgqfVxuR4-0-86fbf4b807b8e3c72401e323b2bb4205)
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1738833272-yb9auVpzvpGf1uhaAaM91FtVgVU1rcpP-0-c9b02ba115f3e9d36f85d60a4c95805f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033004.jpg?sign=1738833272-6Md6gMrEkJmrhBys33xIL9bUW5SH53mU-0-d2d2a37670e37f918d7a982b493022a2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1738833272-okkicgsdqPNSfLrhex2Iq63hQYxhfFAx-0-42e46438ad17890130f77c7bdfff720f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033006.jpg?sign=1738833272-eDAjG87bQDKzs9XapK4bHFzKpjReqbb4-0-917aebb86c4b6bea6fe5b9f20f9c3dc3)
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1738833272-nupJwwa4kWwZsPvhn4xiZ6ovmffCCYos-0-2904e348a99b957ecf67c0942f21cfab)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1738833272-z8kb4Fg7YseXlryKgJos7XTCKbGB5UbF-0-b88aa9e44341ee622ba54b3b125f1512)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1738833272-Iwv01j49YxEav536KK9l2XMc80ymVZ3p-0-2c49df0ea12a52438e795524b25114a7)
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034002.jpg?sign=1738833272-5GdoK24LxxGbAVe2waxi9yiux5SNLzvl-0-fccf53503cb4993b092f23f3192cb77c)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034003.jpg?sign=1738833272-HkNxTskIoFjMt9PYEhM2RioAyhuwsdGd-0-d59b71337883bbe1c8ed598c77b7e469)
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034005.jpg?sign=1738833272-u2oKIB5qG0eFEv1yJc0QgH6Mrb69ABMN-0-991071f62d74456464029fad96d10598)
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034006.jpg?sign=1738833272-s7E83ng1J7AvRdqisn3yTELMaBAWo5d7-0-4d93bb93ee01fe6e02da3c07d8629bf0)
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738833272-UsYh58lLHDHR4PFKtOolBxkzJXf7gTfI-0-7f33cb1c25bcc9a1716aad3bda053b9f)
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034008.jpg?sign=1738833272-nv59c46hNYE5SyQ5LlG8AlWbS9uYgj9q-0-30b1f9bd56fd84395921f4cebcb7c949)
法则3 两个函数商的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035001.jpg?sign=1738833272-arKqO9TespdFKAjydsCCcBqS98itDNBn-0-5c00c9132980979cb431a22e2609348a)
推论3
例3 已知函数y=tan x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035003.jpg?sign=1738833272-5Ix6SchF2OEgDaM9hA12Nhwbup7aojWR-0-cacade0ba0838735949ac64eacd49759)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035004.jpg?sign=1738833272-B4lf2WSuGD72BKgs8yi6Ypi4C7IZcBen-0-b756a0e6113b90b7f02a73c210725393)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035013.jpg?sign=1738833272-ceYnkvHbWHAyd94CNbT5Fu20LQ5lcg0u-0-2119f48a74bfb2ccc11aba8e8fa4035e)
例4 已知函数y=sec x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035014.jpg?sign=1738833272-gvU4HiBRwu5tzM6ZdckZmtTTDpTa3OGJ-0-4eba4e33088cca5b15f5ebaccc848f75)
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035005.jpg?sign=1738833272-r86UKK4fuKkLN8Ay2q4Guc0kulnJ0n9C-0-b3d2fc61741438f07e5f684896949506)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035006.jpg?sign=1738833272-H9un3W38QofwTzdgUWixoEmaHDWKfus3-0-59920a7fc3d8991c363480bf8b409a92)
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035007.jpg?sign=1738833272-xGLMUDiovCRiCuFGDfp3J2kbQ95DWh2B-0-67ca446412d072d1af43719492c4a720)
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035008.jpg?sign=1738833272-Fz5kWJiDqI9l0S29jzwCdVLQcR9kuFTW-0-b4b1246a151aeaafb1f3477e4dc6148d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035009.jpg?sign=1738833272-9aDlnRniZI2NmDwSNqyYpXXlXmad6y6b-0-4b497c1e18ce7a01a3691b597ab3a568)
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035011.jpg?sign=1738833272-fgLox3rcmM8vCcmpLaJ6uyHjJlFOSOF5-0-dbe67d550565a8389ad7829609d74f2d)
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036002.jpg?sign=1738833272-kZU7Dj1Ly9r6p9AUpxrdfvKlHI2eUpv6-0-55f8fb671445f2d1db2f1f8d6f5cf61d)
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036004.jpg?sign=1738833272-TatVI96kMLkbZdOUSg0YLqqtZxyCGzB9-0-92410d2c6e0e987734302cba290ce865)
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036005.jpg?sign=1738833272-IOChsjpTIHbQgOUwJ1KOE1CnMgzp8C95-0-3d77a70755a066d38bccb9bbdabe93e4)
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036006.jpg?sign=1738833272-L3VEK5fVhy4JD1lQGN13KQk78sHLBl0m-0-272739ba1f643722d72ed2248483b2de)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036007.jpg?sign=1738833272-PzJiWPPTfx94DkCsbLYE50oDi3wjOJYR-0-ff3c1aa93d2e107f86d2919830140b01)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036008.jpg?sign=1738833272-imfki8sbLu4PmRmeznDzRdfdJpJktQxo-0-6d792c583b68f412ef79cf05504d8c24)
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036010.jpg?sign=1738833272-6mLA5lNJ2iDAguLF40n2xiSmnw4rbS6R-0-a4fe373f0092991b998183daf303307a)
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036011.jpg?sign=1738833272-S7t5IkYElFGMiZp7DH0BSgJ3pbQ83GYk-0-b003324e516ed164440407df243a1fc2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036012.jpg?sign=1738833272-c24eEBdfpwaM4dHpWOdt5dvD6LTgHEVu-0-22eaa841ed48e19d167b16fe166bae8f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037001.jpg?sign=1738833272-wWpLWb8uYneM8o8JsCIoSgDEf66XhKAI-0-9a67ce0db398fc141050ed15e071145b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037002.jpg?sign=1738833272-BZzcpEScK1FhJnnTlf8hFUecWIq4cFFJ-0-760b36a3b59d51f5c7e347b4f8e6ae2f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1738833272-rKuYvKggZ6jWZQyzMZh5ruCoDac5kFc7-0-e988ac818f1e0684f67a143f9f7617f8)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1738833272-z3KYYkHPafVuKIQO3Z24IeMrvcsgjilo-0-ac86696394bfbb9a0be9509400caa9a6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1738833272-dXG0MvZHlyCl3dz1qVljN3jXSaLYYQzg-0-03a97a592514e401d6a0cbb831c6126f)
用类似方法可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1738833272-UuV3slv1kyAs8sgJa3datzBe2Bmwoba4-0-3d70080a031c8fbeb808af9df420d70f)
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1738833272-J19LAf9U404G9SD2ICUHw6TihoUwvvjN-0-618d95a91a0e4447ec15cf61e000632a)
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1738833272-89ke5kXZLLr7kG3c4EJXPe68CsaJg7gO-0-09bd293649c4a40ab26980dac1e5f31c)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1738833272-Z2YcXowfMfKgWkiFZ5QeyZSHeIEaaGEI-0-0ffb3fbb5bdf379f1981671902fb45da)
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1738833272-ijj3EVOPmJduRj5MnRhXELN57zdNG7Ji-0-8017a47f40751f775a37df22ebb8a4b8)
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1738833272-4i3JkvpTIomfELItQ9y3UCQNlimp4Hua-0-0555f381124625ae869b09052718670c)
对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1738833272-Aj1zwqSH01tZ92TqF0VQbqhVGugzuvVl-0-7f0a1b43d9cb2f47c7d0b99cf6339d88)
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1738833272-jDyAH25821gZK8my6h6qcRK2cu5yIiG8-0-2be27227227845d2ae811888bf265496)
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1738833272-Q8IH0bPU2rWVYYqrIvLboKmA0ld1B1vd-0-249952fec43ed57485c02f44c2dfdd7a)
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数
,及x对t的导数
,即得y对x的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038009.jpg?sign=1738833272-8RNq4K6Jkw8hyBb5DdAKvKYVSfNpTTrD-0-69d7954ced73284947f80107d13107a5)
例15 求由参数方程所确定的函数的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038012.jpg?sign=1738833272-QIXcd6QhJiNOKNh6K678NuyQwjRqmvQ7-0-4487707270affc2b25f88562a7524bd7)
故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038014.jpg?sign=1738833272-DVIDYUWAABAaCjnePHpZE75JEiHsX3Up-0-5647001cf59fbdefb33898531d47c9dc)
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038013.jpg?sign=1738833272-e0hIfguuRe931cUswE27GjeYxu32yueO-0-0cf97dad8073ecb10a6c84164dfda82b)
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039001.jpg?sign=1738833272-MKn9qHQtwzqwJvdDjGnzzPdUiYE2EZxJ-0-421b11edf7b0a4403216659bef73c984)
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039008.jpg?sign=1738833272-d6PsMHfuHitWxvAchQYJ0Vt4HP6j9NTC-0-7859984da59a8b430060d9368395e433)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039009.jpg?sign=1738833272-07w9mYp7MQbO0JHYwwbIofCjIdWbc5kq-0-1ea2c2e5bcbfb39a066b16c99d549afd)
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039002.jpg?sign=1738833272-nq80oEdmVZAaM93qmTiGeqtWkycUfM6o-0-08fddc46e202df8f6c184da7ce914296)
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039003.jpg?sign=1738833272-Fghwekd9esx7MvSFSn2Hi6hC9GWV19Sy-0-6776f8ae46364a756f45b28bb64f8c05)
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039005.jpg?sign=1738833272-wGtMmTQlMKw77NBvuSO7ejReZzb1pOXe-0-8e1a9faa731eb7876bdc2b6cfb447731)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039006.jpg?sign=1738833272-w1UQwvzIu7pwXDPrvUV8aakByjnUhY08-0-4dde65bab7f10525f0aa25f15b8c8985)
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039007.jpg?sign=1738833272-OfGi7feZuey1U4jOQSQmILDoZtwwPwku-0-387d1fa299cc2f43aa2038ce842e5d7a)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040001.jpg?sign=1738833272-orf4lvz4QY1V3oAR1HzgiqBIfJ150Iwz-0-1a64c9eeddebc898ff0d7a2ddc3a2a16)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040004.jpg?sign=1738833272-FogRpdOQr6Izdk4KZo9OPWTFmHl4kQiq-0-5b665e3e8ac1355feafe64906105a698)
同理可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040005.jpg?sign=1738833272-DTzReyiZGvrIfADwOzu7Ww0HgoQlYnnx-0-721b3bb5405620230b7d359a5c05c57d)