![五年制高职数学(第二册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/608/31729608/b_31729608.jpg)
6.3 向量的数量积及其运算法则
本节重点知识:
1.向量的数量积.
2.向量数量积的坐标运算.
6.3.1 向量的数量积
在物理学中,一个物体在力的作用下,产生位移
,若
与
之间的夹角为θ,则
所作的功W是
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029017.jpg?sign=1739283756-IKz6EyZxW7JxFTRJ1sGTjZyA3DbrfhNF-0-b02f6dba89096963ced89f93f2ed6cb3)
这里功W是一个数量,它由向量和
的模及其夹角余弦的乘积来确定.像这样由两个向量的模及其夹角余弦的乘积确定一个数量的情况,在其他一些问题中也会遇到,如物理学中的功率
等.
若将两个非零向量,
,设为
则把射线OA与射线OB所组成的不大于π的角称做
与
的夹角,记做
显然
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029027.jpg?sign=1739283756-raWyAFl9IbubWtUodbPjAphj4TL47sGz-0-3fb22ff2760236055cfbc116645c2274)
在数学中,我们将两个非零向量的模与它们的夹角θ的余弦的乘积定义为
与
的数量积(又称做内积),记做
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029031.jpg?sign=1739283756-jny3X61FgqlBakXo6jepQiEFJWxl8aWp-0-edcdeebed3dec99934d140fa191d172f)
其中θ表示
从而也可以表示成
注意 两个向量数量积的结果是一个实数,可能是正数,可能是负数,也可能是零.
想一想
如果 是两个非零向量,那么在什么条件下有以下结论:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030004.jpg?sign=1739283756-kbmpp3CjONrxxdTAIEWPz9vWgNlZVapC-0-dea1f37e957c3ae6b687af1a1113f38d)
练一练
(1)如果 ,那么
_________;
(2)如果 ,那么
_________.
例1 根据下列条件分别求出
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030010.jpg?sign=1739283756-bwk8wOyim6OjrKE7XDs624B6kDfwO666-0-f302e4b17d57a7a39174d44f5946da4a)
解 (1)因为
将已知条件代入,得
所以
又因为
所以
(2)因为
将已知条件代入,得
所以
又因为
所以
向量的数量积运算满足交换律和分配律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030021.jpg?sign=1739283756-wowrVNniwnu8riStW7jWz4IMKyiT7V8u-0-662e35830da56a1d0fe09e724ec6dc98)
但它不满足结合律,即
当实数与向量相乘时,满足结合律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031001.jpg?sign=1739283756-zU3hV1L0LVmd8dgUh9C2TYPIVdGoHprD-0-02151508a17e3e5326777fbf1bc75905)
例2 已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031003.jpg?sign=1739283756-nBEiUMrrNpWqptLeWgdRbOs7FAHVWT8z-0-1e67c88f381fdb46f840190bd5b984f8)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031004.jpg?sign=1739283756-v454mmPzec4rOv2kHYX1vtHrTksmI3Tz-0-f0267a4d3d5b8b101fe2a9a681cdfdc3)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031005.jpg?sign=1739283756-xJRksX57TDIZDoBBRuTbCEhAkp4MP16f-0-88b571cb019b34469667383624494cb9)
练习
1.已知分别是平面直角坐标系中x轴和y轴上的单位向量,分别计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031007.jpg?sign=1739283756-IHf3XYClWdeSkYyyqlr7HwFEeAMtvKjK-0-ec112f056b5297bb5d646be5525fe07a)
2.根据下列条件,求:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031009.jpg?sign=1739283756-yJDrhddijqs1Ai3FNA123sfy3U2FPjNL-0-f627023be249052cc795bb7000a2852f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031010.jpg?sign=1739283756-luVxXKG1b8vBKJ94UK5jdYvxoY4xH1aJ-0-209335517b1a9d27b6fee4b1483ed115)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031011.jpg?sign=1739283756-LC32Yd7Seb497rFE6rAV92pmYX6W7IPc-0-ba02cf83f536fb8a99a5cd51145412e5)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031012.jpg?sign=1739283756-OrMLgCVQfGFABssDvu6kyiF4qVBbKrxl-0-4acf062390337ef7c24b40f50ed3c889)
3.已知求
4.已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031016.jpg?sign=1739283756-Ng7xaNnwDUTunbOEuWj1DiYtmG0KVSs8-0-1c94a0288ea1cb35df962ab49469ea8e)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031017.jpg?sign=1739283756-ZuvzNSVZ0qm7YtfM71n9422vTkMlePYd-0-3499a16b7d4089e7d2d46db3254af0b4)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031018.jpg?sign=1739283756-TbKgBrTNOouaC0tTfcJxGVjmPphPonQG-0-161801f57d311aff96c7d0a874b2dfa4)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031019.jpg?sign=1739283756-BHFK7iuJmS5J1eIfVn1k9RX0oH6L04aH-0-ace6d5afd73cfdb6752d6a015a83df3d)
6.3.2 向量数量积的坐标运算
设向量的坐标为(x1,y1),即
向量
的坐标为(x2,y2)即
则
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031026.jpg?sign=1739283756-JfxhOEg7FLhLiV7nmQYJBrdPafNUKscK-0-828b0b92305e5a4c32948d627e189579)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031027.jpg?sign=1739283756-coS4aUEeY26pRRVEvtGaqeWGllk5MX1S-0-31be85c427a0c9aa397b0a67c83457ee)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031028.jpg?sign=1739283756-vAXKdIDiko0dvLMdOQ7QGG1JF9C4KuaX-0-c9759745de45f9f7a7874dc91ef1038a)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032001.jpg?sign=1739283756-MHRWwGuTucwE840WBAKaM2QFpT5Z1HxG-0-8d566dcb411f105b4562395be20eec13)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032002.jpg?sign=1739283756-mWhDWiUStmTgoIOEhpTpMosWLrS4uNhY-0-e1c344b627fbcad09615886a891283ac)
所以
就是说,在直角坐标系中,两个向量的数量积等于它们的横坐标之积与纵坐标之积的和.
例1 已知求
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739283756-4BTXXI4KhmZAwxec7JI6HHnR2XtkP41b-0-5b40f3a3bb1067b8bfe80dccc26b4e32)
当两个向量垂直时,夹角为,此时有
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032008.jpg?sign=1739283756-CY4iwADqIK4e4TKXoO3WlkomguJdsuCt-0-0dd9baa8c310801990262ba6e5da5ac4)
反之,若非零向量的数量积为0,即
则必然有cosθ=0,即
故有
如果则有
例2 判断下列各题中的向量与
是否垂直:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032017.jpg?sign=1739283756-6ZedEx1Dj3gYUjgTOTsAWoOZJicXjvFQ-0-044769fdfdadf989a40989e4746cd2ca)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032018.jpg?sign=1739283756-GZKilULrnuD7VtIsCizMX7ymPIvcGa8N-0-d6acbef6075fde826e97126e46141eec)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032019.jpg?sign=1739283756-piRkGNp8N5CyngKyVd3zwCnV4S9Vl6mv-0-caffe5cf3b54665adf95e736812b4c4f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032020.jpg?sign=1739283756-YKMdrAXhJNTWEBzeU37RSmCjvtWZkuSM-0-d8312bd71e079d67c91429e783ffd56b)
所以 与
不垂直.
如果那么
所以
就是说,利用向量坐标,我们可以计算出它的模.
练一练
算出下列各向量的模:
(1)若 ,则
(2)若 则
(3)若 则
如果点A坐标为(x1,y1),点B坐标为(x2,y2)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739283756-iZXhpVxspTXjINVKRMTBPsgFmlqaWN9z-0-7a585274e7a58e9905646fe6e5f01b8e)
于是向量的模
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739283756-Wb4OmSKsZSBOasUFUACY9LgWUkLDVWHq-0-5553c75c30f498aaebbd93ffc6f39b2d)
由于的模就是点A和点B的距离,所以我们得到平面上两点间的距离公式
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739283756-nr7bMomE5qe3T8ZEnfAiJY2fxpuAuZ32-0-810f4af2b5a25ac223d310514665fa97)
例3 已知A(8,-1),B(2,7),求.
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033007.jpg?sign=1739283756-ZbhwByPXKTdWzQZuRL1EITDv9Mw8SfbF-0-17286b23147fcd9f1220b5e792b933da)
例4 已知点A(-3,-7),B(-1,-1),C(2,-2),求证:△ABC是直角三角形.
分析 可以通过判断某两边互相垂直,证得△ABC是直角三角形;也可以利用勾股定理的逆定理证得结论.
证法1:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739283756-FDhxDFTcpexyHhOu43axN1RfN3VLbAke-0-b5c0030b1acba93c1686cc75e13a112b)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739283756-WntBjrzpUsiZ1nt11dkwqb3INwIectKC-0-5b52b9df02f0fa30d1e08cd8d40b4840)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739283756-oBZeinTn42WxCabjmqAWIeDMu7cPZklU-0-5c8c62a7227e344cdab7fdd932cf4f8e)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739283756-ztYu64mdxg8ajv1DKSqR3WC2sXGGD2hC-0-52e6d57d468303d700ffa3cff5770b25)
即∠ABC=90°.所以△ABC是直角三角形.
证法2:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033012.jpg?sign=1739283756-9SL4INUiUQntFBPloC8T1CYh5j8CTQP7-0-6f30a4c357d48fec8f4aace2a04a321c)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033013.jpg?sign=1739283756-n3KOAcGBEvBDBETkJAP2dprm9mr6plQM-0-4b95d74e8cd4d6522a66e383e8a81170)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033014.jpg?sign=1739283756-1CUdoQ6kQgeGOnuhaTlJ6Mzlc8xbBq92-0-01de55b81ad2a3b3bf3e299c7600d549)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033015.jpg?sign=1739283756-NYVUUrewlZ42fbVbWpDvKkiaC3NsX1jP-0-1211bd98f695008e8af97dd8c36b4fca)
即 CA2=AB2+BC2.所以△ABC是直角三角形.
练习
1.求的值,当:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033018.jpg?sign=1739283756-EvuxCFb7T1fNHbtdOBObUXqH9Q6wJCmX-0-3bdacad6396167da878cae51a75e60f0)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033019.jpg?sign=1739283756-OC5HCGSPZTUmrkyfzel9dzw6VhsuWD1s-0-aae79f70a0b4a404989db1ad0b116bbf)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033020.jpg?sign=1739283756-tTO0uoXUOD392KOPIqGiOUHEEnBACyyx-0-02a33ca9984747518c19dd7deef0963a)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033021.jpg?sign=1739283756-X92qJZ08ytNZDM3fzoFcyyI8wFfi5fm8-0-3b07c2c91a9f8dcaab94b4e5face3096)
2.已知M(6,4),N(1,-8),求
3.已知A(-4,7),B(5,-5),求