
2.2.3 内力计算
闭合框架的荷载设计值如图2-27所示,结构的计算简图和基本结构如图2-28所示。弹性地基梁平面框架的内力计算可采用结构力学中的力法,只需将底板按弹性地基梁考虑。

图2-27 闭合框架荷载图(设计值)

图2-28 计算简图和基本结构
由于结构、荷载对称,故未知力x3=0,典型方程为
δ 11 x 1+δ12x2+Δ1p=0
δ 21 x 1+δ22x2+Δ2p=0
系数δij是指在未知力xi=1作用下,沿xj方向的变位值;Δip是指外荷载作用下沿xi方向的位移,可按下式计算

1. 计算
在单位力x1=1、x2=1及外荷载q作用下基本结构的弯矩如图2-29所示。

图2-29 M1、M2、Mp图


混凝土强度等级C30,E=3.0×104N/mm2=3.0×107kN/m2
截面惯性矩×1×0.63m4=0.018m4
根据结构力学力法的相关知识可得:

综上可得:

2. 计算bij、bip
特征系数
系数φiλ计算:
ch(0.368894×4.2)=2.460408,sh(0.368894×4.2)=2.248023
cos(0.368894×4.2)=0.02144,sin(0.368894×4.2)=0.99977
φ 1λ=chαxcosαx=ch(0.368894×4.2)×cos(0.368894×4.2)=0.052751
φ 2λ=chαxsinαx+shαxcosαx
=ch(0.368894×4.2)×sin(0.368894×4.2)+sh(0.368894×4.2)×cos(0.368894×4.2)
=2.50804
φ 3λ=shαxsinαx=sh(0.368894×4.2)×sin(0.368894×4.2)=2.2475062
φ 4λ=chαxsinαx-shαxcosαx
=ch(0.368894×4.2)×sin(0.368894×4.2)-sh(0.368894×4.2)×cos(0.368894×4.2)
=2.411645
(1)x1=1梁的左端M0=-M1,Q0=0,梁的右端MA=-M1,QA=0(图2-30),可求得两个未知量的初值θ10和y10。

图2-30 M1作用时弹性地基梁

令,G=-α,H=1;

则,
M A=y0Aφ3λ+θ0Bφ4λ+M0Cφ1λ+Q0Dφ2λ
Q A=y0Eφ2λ+θ0Fφ3λ+M0Gφ4λ+Q0Hφ1λ
将数据代入上式,可得:
330314.555y10+480406.2007θ10+3.2206466=0
135976.4642y10+330314.555θ10+3.02478066=0
解得,
θ 10=-1.28175×10-5,y10=8.8914×10-6
(2)x2=1梁的左端M0=-M2,Q0=0,梁的右端MA=-M2,QA=0(图2-31),可求得两个未知量的初值θ20和y20。

图2-31 M2作用时弹性地基梁
330314.555y20+480406.2007θ20+0.947249=0
135976.4642y20+330314.555θ20+0.88964137=0
解得,
θ 20=-3.76984×10-6,y20=2.61510×10-6
(3)xp 梁的左端=79.38kN·m,Q0=-75.6kN,梁的右端
,QA=75.6kN可求得两个未知量的初值
和
。另一部分:梁的左端
=150.28kN·m,Q0=0,梁的右端
=150.28kN·m,QA=0,如图2-32所示,可求得两个未知量的初值
和
。

图2-32 外荷载作用时弹性地基梁

解得,

解得,

叠加可得:

综上可得:
θ 10=-1.28175×10-5,y10=8.8914×10-6
θ 20=-3.76984×10-6,y20=2.61510×10-6
θ p0=0.000765,yp0=0.001488652
b 11=2Hθ10=2×3.4×(-1.28175×10-5)=-8.7159×10-5
b 12=b21=2θ10=2×(-1.28175×10-5)=-2.5635×10-5
b 22=2θ20=2×(-3.76984×10-6)=-7.53968×10-6
b 1p=2Hθp0=2×3.4×0.00066793=0.00454192
b 2p=2θp0=2×0.00066793=0.00133586
系数:

3. 计算未知力x1、x2
典型方程:

(1)弯矩M计算 框架结构的弯矩采用叠加法按下式计算:


顶部中间叠加弯矩×36×4.22kN·m=79.38kN·m
弹性地基梁的弯矩按MA=y0Aφ3λ+θ0Bφ4λ+M0Cφ1λ+Q0Dφ2λ计算,=-24.205kN·m(内侧受拉)。
弹性地基框架的弯矩图见图2-33a。
(2)剪力Q计算 结构顶部:
两侧结构:

弹性地基梁的剪力按QA=y0Eφ2λ+θ0Fφ3λ+M0Gφ4λ+Q0Hφ1λ计算,Q左=75.6kN,Q右=-75.6kN。
弹性地基框架的剪力图如图2-33b所示。
(3)轴力N计算
上侧框架梁轴向力N=q2H=26×3.4kN=88.4kN
两侧框架柱轴向力=36×4.2/2kN=75.6kN
弹性地基梁轴向力N=q2H=26×3.4kN=88.4kN
弹性地基框架的轴力图如图2-33c所示。

图2-33 内力图
a)弯矩图(kN·m)b)剪力图(kN)c)轴力图(kN)