![中国代数故事(少年读经典·第二辑)](https://wfqqreader-1252317822.image.myqcloud.com/cover/585/47402585/b_47402585.jpg)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer365.jpg?sign=1739286169-A6aEL6x0gfTP1ByfFylpCJ6SjsVKjibU-0-a4fabe80919c99fb71a732c3b24434f6)
在中国古代的方程算法中,所列的方程不象现今代数里那样用字母代替未知数,而是记出每一未知项的系数于一定地位,和代数里的“分离系数法”一样。解方程所用的直除法,是从一个方程累减(或累加)另一个方程,用来消去一部分未知数,和现今的加减消元法略有不同。下面举两个例题,把古代的筹算式和代数的新记法并举,读者对照一下就可以明了。
【例一】今有上禾(稻棵)3秉(一秉即一束),中禾2秉,下禾1秉,共有实(禾的果实,即稻谷)39斗,上禾2秉,中禾3秉,下禾1秉,共有实34斗。上禾1秉,中禾2乘,下禾3秉,共有实26斗,问上中下禾各一秉有实多少?答:上禾1秉有斗,中禾1秉有∠
斗,下禾1秉有
斗。(题见《九章算术》)
列上禾3秉,中禾2秉,下禾1秉,实39斗于左行。同法列得中行和右行,如(A)式(古法自右向左依次列三式,现在为便利起见,把它对调一下)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1739286169-OgehYJcnKHA5CTxSK0KR4eHLI4EyURes-0-ed832cee592cf48645564d5b16cde3f2)
以左行上禾遍乘中行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer02.jpg?sign=1739286169-23rOGAmJWsFdyiSWuVSoJ2PUQ7MLQZvd-0-866499c0157dbcf9f6326572094fdde6)
用直除法从中行累减左行,经二次而头位减尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer03.jpg?sign=1739286169-kOMPPjVEHTKGxlU3Md4gO6s6b6B8Z1EP-0-e65805cca0790a5de73a3d3e8a9e8520)
仿上法以左行上禾遍乘右行,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer04.jpg?sign=1739286169-wQctxr4y7P72llLjRsxPaTE3vjPKrPxE-0-b88b3ec7b4b839d5333313c2c2ccfa2f)
从右行减左行一次,头位已尽,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer05.jpg?sign=1739286169-jpw2QdPHVNuBL23AzjFPD1M4CpUasheC-0-38cdfd18a3d3bdb8f269dd2cf40781dd)
再以中行中禾遍乘右行,如(F)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer25.jpg?sign=1739286169-VWhzfzANbIshAa4AmOaIA7vhO9BtmIzT-0-01678754bf2de5660c19ca32b043e870)
从右行累减中行,经四次而第二位也尽,再把右行约简,如(G)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer26.jpg?sign=1739286169-4ezI0K5gK95OvXwkdlr4ZbPw9eFboSRG-0-bfbfde717e75228597378d64b982c9a1)
以右行下禾遍乘中行,如(H)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer27.jpg?sign=1739286169-99yMLKTPR8LFds59saseekiaEWcbbLGz-0-2e356f092d8e333927f8c77d66b5b4b3)
从中行减右行一次,第三位已尽,以(G)式中行中禾来除它,如(I)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer28.jpg?sign=1739286169-ZkDoujP2vrWAioV1NfK2sYqo3tQy4cJ3-0-34b7c11ad7975dcaf95d7686026ac8dd)
以右行下禾遍乘左行,如(J)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer52.jpg?sign=1739286169-K6Eir5gTEcZ2jhxoE87Dlobsfr2AhJ5J-0-52e6e8c186f3118552ea9c2ab3c09a1e)
从左行减右行一次,又累减中行二次,第二、三两位都尽,以(I)式左行上禾除之,如(K)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer53.jpg?sign=1739286169-dwo692buXR1Y371B8VmH6DKFTias2cNU-0-2179b258249e64ae7e92a5a9b81db4fa)
三行各以上数为除数,下数做被除数,除得商数就是上中下禾各一秉的斗数。
设上禾1秉的实是x斗,中禾1秉的实是y斗,下禾1秉的实是z斗,那么依题意可列三元一次方程如下:
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer232.jpg?sign=1739286169-5phNwU8lJbcaeJNxG7E3xJ1wQmzEBxsa-0-0930fc37aac5d253c792df2d75bbab4f)
以(A1)式首项的系数3乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer252.jpg?sign=1739286169-Zdo5Qnzx0fF0EIK40GMTIuM1MhDdTooN-0-f2854117610cc72b939f421621285190)
从(B2)式减(B1)式二次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer265.jpg?sign=1739286169-m9cBcNIpCPDbtm5cDPaueDE84WBwh2td-0-87c3a2a4127472601a37b0dd2207beef)
又以(C1)式首项的系数3乘(C3)式,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer281.jpg?sign=1739286169-SETied8aW2zFuQqihmwZlQ7DqHn1qUcc-0-5a045ef8ac7d9e5460c489073139e233)
从(D3)式减去(D1)式,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer294.jpg?sign=1739286169-C19Gf50s15jwGeZGprnZPRUSI3RRg2eu-0-247ba02fda45353beaf9281af1262674)
再以(E2)式首项的系数5乘(E3)式,得
(F)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1739286169-OgehYJcnKHA5CTxSK0KR4eHLI4EyURes-0-ed832cee592cf48645564d5b16cde3f2)
从(F3)式减(F2)式四次,再以9除所余的式,得
(G)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer06.jpg?sign=1739286169-ebjc3O1KH15io5oxnpgX3wenBrjNW1ol-0-c6f22084abaf8c3489b6988e58874ab6)
以(G3)式首项的系数4乘(G2)式,得
(H)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer29.jpg?sign=1739286169-OOHXBbH2rtxmX21cJcoXrtupYlKDhHlh-0-a4c43cb535fa4802c6c8fde40210dbf3)
从(H2)式减(H3)式,再以(G2)式首项的系数5除,得
(I)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer54.jpg?sign=1739286169-kjkCLjOXEZyDt7jBzW49h6Teywl2JdCy-0-86d55f2c657195898bcf2a1cd233e64c)
以(I3)式首项的系数4乘(I1)式,得
(J)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer72.jpg?sign=1739286169-JiLhyWwLNNew6PSUBVfkQXB551niyCNp-0-0e435696351a7a15445a985cedbcebf5)
从(J1)式减(J2)式二次,再减(J3)式,再以(I1)式首项的系数3除,得
(K)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer85.jpg?sign=1739286169-2nXjjiwfyWNjZPjuADQSJbffbaYNobAw-0-a3307e7fdc3a2baba69d2c2b4c267d29)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer103.jpg?sign=1739286169-XMWHXfSPsL67LqLrqeXVP9CulLUEPm0N-0-689b5aa4a0d1ab42ed514e540637b0dd)
从上举的解法,可见古时的方程算法很是别致,虽较新法略繁,但步骤非常整齐,在使用筹算时可说是很便利的。
【例二】今有上禾6秉的实,去掉1斗8升,等于下禾10秉的实,下禾15秉的实,去掉5升,等于上禾5秉的实。问上下禾各1秉有实多少?答:上禾1秉有实8升,下禾1秉有实3升。(题见《九章算术》)
列上禾6秉正,下禾10秉负,实18升正于左行;又列上禾5秉负,下禾15秉正,实5升正于右行,如(A)式(负数的筹式,《九章算术》用颜色分别,现在为便利计,仿宋代的方法在末位加一斜划)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer68.jpg?sign=1739286169-JYJfF53ejlkmjgq3cuyt3GU8WT93icnr-0-f8728709c5015517dad667d385e346dc)
以左行上禾遍乘右行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer69.jpg?sign=1739286169-wkuu1uD8aGpJXMQlHqYtBegUyGEohnW8-0-52e644b594423eb899dfc6ebe994ce41)
从右行累加左行,经五次而头位尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer70.jpg?sign=1739286169-Mamm3FMu9LK6YUd1nJerquDlMT77I5Pt-0-4a8b7d23a815c6c096da7771c83094f7)
右行上数做除数,下数做被除数,除得商数是下禾1秉的实,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer71.jpg?sign=1739286169-AVcdgmZTAWQ1nPwytI5P80tyGJ0XCvIr-0-b41ecf2001f6ff7ab64df10bdf745704)
又以所得数乘左行下禾,从左行末位减,再以头位除,得上禾1秉的实,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer83.jpg?sign=1739286169-4gPTtNiEBSzjkM1JeQICmZx2iosbg9xg-0-f2bba09e8c77e334b9ccefe2c31cc236)
设上禾1秉的实是x升,下禾1秉的实是y升,那么依题意可得二元一次方程组如下:
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer115.jpg?sign=1739286169-c1nD6yDrfo9Zbja38lSSyXaKX8MyAtKN-0-c78f867a68463ef4683493c7d9618e1a)
移项,整理,得
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer128.jpg?sign=1739286169-IYeVEiULRiYt0Fzx4pM1jxNEya3bbLsq-0-7e1b9a4d1ad9cbcaa7f7d26b123a8260)
以(A1)式首项的系数6乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer139.jpg?sign=1739286169-YWOlZRYB1ek0R40aSRTInuN46UhLJjEF-0-308d7a489cef0d972522d0c2116e2a0c)
(B2)式加上(B1)式五次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer150.jpg?sign=1739286169-rd8ZFmNgUAcvetD8BPYLkDbkHsM3Ul2j-0-2866a8d7e99cf72dcc00df47c35a5dc0)
去掉(C2)式左边的系数,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer162.jpg?sign=1739286169-AOgbgmcohwhBw6wwLSMEz1UmARdrRwMt-0-a4e0dd643e8b04fad925fadb611bf97e)
以(D2)式右边的3乘(D1)式的第二项系数,从右边18减,再以第一项系数6除,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer173.jpg?sign=1739286169-TmB4xJYgV8LJrXaInTsbZMhFaFiVRVpF-0-c40ddea6fee1734ce22275548d08dd06)
在上举的解法中,有(-30)+(+6)=-24,(+90)+(-10)=+80,(+18)-(-30)=+48……的正负数加减法,又有(-5)×(+6)=-30的乘法。