斐波那契的兔子:改变数学的50个发现
上QQ阅读APP看书,第一时间看更新

约公元前2700年 为什么1分钟有60秒?

相关数学家:

苏美尔人

结论:

我们今天使用的许多数字,都来自古老的苏美尔数字系统。

苏美尔的六十进制

我们生活在一个十进制的世界中。这个世界到处都是数十、成百、上千、几百万的整数。那为什么那么多日常生活中的基本单位都能被6整除呢?比如,白天有12个小时、1小时有60分钟、圆周角度数是360°等。这仅仅是有些尴尬的历史遗留问题,还是说它们背后有更待深入探讨的原因?

楔形数字

六十进制,或者说以60为基数的数字系统,起源于四五千年前美索不达米亚的苏美尔古代文明。苏美尔的数学也许是当时最复杂的数学。尽管其他文明的数学可能同样发展得不错,但是大家都知道,苏美尔人对数学有更专业的追求。他们将数学刻在石头上,更确切地说是泥板上。

苏美尔人发明了最早的一种书写系统。为了记录语言和数学,他们在潮湿的泥板上用叫作“stylus”的杆子做好楔形的记号,然后在太阳底下将泥板晾干晒硬,上面承载的信息便得以永久保存。形状使然,人们将这些记号命名为楔形文字(cuneiform)。这个词来源于拉丁语中的“cuneus”(楔子)一词。

苏美尔的数字符号并不复杂,仅由竖划记号和箭头记号组合而成。单个竖划记号表示1,代表一个单位;两个标记表示2,三个标记表示3,依此类推。不过,单个竖划记号根据位置不同可以分别表示1、60或3 600。其中的数字,表达起来少不了60的倍数。比如,124这个数字就表示为两个60的记号加上4个单独的单位记号。

为什么是60?

也就是说,苏美尔的数字系统和罗马数字有点儿像,只不过这个系统基于六十进制而非十进制。但是为什么是60呢?长期以来,数学家一直想对这一问题做出理论解释,但并没有得到确切的答案。公元4世纪,亚历山大城的塞翁提出这是因为60是能同时被1、2、3、4和5整除的最小数字,所以因数的数量最大化了。但是与60一样,还有其他数字也有很多因数。

出生于奥地利的美籍科学史学家奥托·纽格鲍尔则认为,六十进制是从苏美尔的度量衡中发展而来的。以60为基数的话,人们轻易就能将商品等分为两半、3份、4份和5份。然而,也有人觉得可能恰好相反,不是度量衡影响了数字系统,而是数字系统决定了度量系统。

还有些人认为,一切答案都在星空中。那时的夜空非常晴朗,而且人们晚上也无所事事。苏美尔人都是狂热的观星者,他们在星空中寻找图案,为第一个星座取名。他们的日历也因观星诞生——星图每晚都会产生细微的变化,一年后最终回到同一位置。

苏美尔人以这种方式得出一年有365天。19世纪的德国数学家莫里茨·康托尔决定将其近似计为360,然后除以6(一个圆要分成6份很容易),以此与六十进制相符。这个猜想不无道理。一年如果是360天,就可以轻易分成12个月,每个月30天,同时还可以解释为什么我们的圆周角是360度。但这仅仅也是猜测。

也许以60为基数的数字系统仅仅来源于手指计数。但是有证据表明,美索不达米亚人用手指计数的方法完全不同。你先抬起一只手,用拇指计算4根手指的3节,从而得到12。每计算一次12,你需要弹动另一只手的拇指,然后是4根手指,从而得到5倍的12或60。一旦你掌握了这种计数方法,算起数来非常简便、快捷。

以60为基数的计算优势

无论这一数字系统是怎么来的,60都可以被许多因数整除,这为苏美尔人研究一些非常复杂的数学问题奠定了基础。2017年,以戴维·曼斯菲尔德为首的澳大利亚数学家们声称,终于破解了“巴比伦人泥板”(普林顿322号泥板)的代码。这块已有3 800年历史的泥板出土于一个世纪前,埃德加·J.班克斯在伊拉克发现了它。班克斯堪称现实版的印第安纳·琼斯,他把泥板转卖给纽约出版商乔治·普林顿。后来,普林顿逝世,泥板被遗赠给了哥伦比亚大学。

这一泥板上有用巴比伦版的楔形文字刻下的复杂数字表。曼斯菲尔德和他的同事声称,这不仅是早期的三角函数表,而且比现代的十进制三角函数表更准确,因为以60为基数的数字具有能被整除的性质——60能被3整除,但10不能。以10为基数,我们很容易将这样的分数表示成小数——0.5、0.25和0.2,这并不难;但要把这样的分数写成小数,只能得到无限循环小数0.333 333…,永远得不到一个精确值。

曼斯菲尔德等人的观点是否正确还有待商榷。但毋庸置疑的是,他们强调的是以60为基数的计数优势。现在,我们已经完全习惯了以10为基数的十进制系统所带来的便利。十进制中,除以10或乘以10时,我们只需调整数位即可,而且十进制小数为无限的计算范围开辟了道路。但是,当面对时间单位的分割,60的整除性质则独具优势,以至于其他计数方式来去更迭,六十进制却一直存在。很少有人会在深思熟虑之后,提出改成10小时为1天、10分钟为1个小时这样的建议。毕竟,以60为基数来划分时间要简单得多。