![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
11.3 名校考研真题详解
解答题
679.证明:若K(x,t)在D=[a≤x≤b,a≤t≤b]上连续,u0(x)在[a,b]上连续,且对任意x∈[a,b],令
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2062.jpg?sign=1739301696-rq4tizd43pKLHUne759rbf3eKp0pSvAz-0-410baadbcbb6c6f5f4d7dc577f297d5b)
则函数列{un(x)}在[a,b]上一致收敛.[东北师范大学研]
证明:K(x,t)在闭区域D上连续,从而在D上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2064.jpg?sign=1739301696-XYScX9mkWhMYxHqZlnbb3gGaAVjyuDPE-0-17d7bf110f13712097ce685b9805dbd1)
u0(x)在[a,b]上连续,从而在[a,b]上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2066.jpg?sign=1739301696-effnvwpnBfzp7vCuBS8xc2CVmAoROi6Z-0-82382b655a03ff8e9ec5af6a41f74304)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2068.jpg?sign=1739301696-ownOp2KIc0yffew0SkcdEAJJ12Jbm2dc-0-91d2fdda16b34ede22c163c2c163f55f)
由数学归纳法易知,由
及柯西准则知un(x)在[a,b]上一致收敛.
683.证明:在任何有穷区间上一致收敛,而在任何一点都不绝对收敛.[华中科技大学研]
证明:(1)对任何有穷区间,使得对一切x∈I有
①在I上一致收敛;
②对单调减且
,即是一致有界的.
由阿贝尔判别法知在任何有穷区间I上,级数一致收敛.
(2)对由于
收敛,
发散,故
不绝对收敛.
685.设函数f(x)在区间[a,b]上有连续的导函数及a<β<b.对于每一个自然数
定义函数
①
试证:当n→+∞时函数序列在区间[a,β]上一致收敛于f'(x).[中国科学院研]
证明:f'(x)在[a,b]上连续,从而在[a,b]上一致连续,即对对
时
对,取
,则当n>N时,对一切
由①式,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2093.jpg?sign=1739301696-0n6lsKuLLaOTZm8lypeBnxWILv8Mkd32-0-35f7ac64efbcf90863b2e3fdff0aa676)
所以函数列fn(x)在[a,β]上一致收敛于f'(x).
687.(1)求证:在[0,1]上处处收敛,但非一致收敛;
(2)f(x)在(-∞,+∞)内处处有任意阶导数,级数…
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2096.jpg?sign=1739301696-eSGWJ8lHCM2OMCJpbypLPRZsXKvQfDS3-0-49749f036b56bb309813ac96fe1c8d3c)
按二个方向在(-∞,+∞)内一致收敛.试求级数的和函数F(x).[同济大学研]
证明:(1)
对均收敛,所以
收敛,
当x=1时,.亦收敛.
所以在[0,1]上处处收敛.
但
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2103.jpg?sign=1739301696-d8fHyY46fSIdmJAW44cisptMc0oKsI3N-0-f59d79f95521845675c6d100b098cbed)
所以在[0,1]上非一致收敛.
(2)f(x)有各阶导数,自然各阶导数都连续,该级数逐项求导之后,级数仍是它自己,因而一致收敛,满足逐项求导三条件,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2105.jpg?sign=1739301696-jpJYuqkcmEZEsQ4WTExTQEr1GgbUi6bb-0-d2df9da7ce2aa7e35d34f5dde1aa153e)
两边同时积分得(其中c1=ec为常数),令x=0,知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2107.jpg?sign=1739301696-v1RKm0eHaiityZnkjelBsispq6X2Mn2e-0-079d6f20160138bf2ebaff6efda70566)
722.写出在x=0点展开的Taylor级数的前五项系数,并指出该级数的收敛区域.[北京师范大学研]
解:令,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2110.jpg?sign=1739301696-rQuM6wsAm39zntSMVId2QB0icTpd6n1I-0-2e707b7bba726a2fbf6a1de4e2af7f98)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2111.jpg?sign=1739301696-QPwjOEsiKsVlCDme26V0ceru9lKdVcNz-0-32e9490ba36f591e60c1622b6da51cc4)
则在x=0点展开的泰勒级数前5项为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2113.jpg?sign=1739301696-ygFrDaRh8fYdSIeZ77OhItW6yMli0B1Q-0-919907d354d6c18533dc79158334d37f)
另外,由于在(-∞,+∞)收敛,因此该级数的收敛域为(-∞,+∞).
729.利用数项级数计算积分
[厦门大学研]
解:注意到
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2118.jpg?sign=1739301696-8ksQE5Es2TvwNNUtLe7gpAK7SbF1efDs-0-e1aab0a5c6e847a3d23524ca2faed7c0)
748.判断级数的收敛性并给出证明.[北京大学研]
解:由于故
而
∴由归结原则
因此由正项级数的比较判别法收敛,从而
也收敛.
1.求的收敛域.[大连理工大学2006研]
解:因为,当x=1时,
不趋于0,所以当
x=1时该级数发散.当x=-1时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2129.jpg?sign=1739301696-gDZKFNobVUvXQs1aRWs3OKM3mKrh66gP-0-426379ad9e174354bd45c16809acf283)
为交错级数,所以收敛.故的收敛域为[-1,1).
1.求幂级数的收敛域及和函数.[西安电子科技大学研]
解:由于,所以收敛半径为
,易知其收敛域为
.记
,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2136.jpg?sign=1739301696-UiY2vnoPOpffaKwWAldvz3ZYoxWxcbtD-0-984f0cf2fc763a30a1bb077b36d23a3a)
所以.
1.求幂级数的收敛域及和函数.[华南理工大学2006研]
解:因为,所以R=1.当R=±1时,
均收敛,所以[-1,1]为其收敛域,在[-1,1]内可以逐项求导、逐项求积分,因此
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2141.jpg?sign=1739301696-0TpijdbYIo1oXaIPLRhKtmljBZ6Ox5Zv-0-58e83a3acff551c22775ab175ea348bf)
令,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2143.jpg?sign=1739301696-ffG9mlCL4mY91wG1Wwl7pQ9TZYNr9mw4-0-f91f52baee06bbedf928318cdf029f98)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2144.jpg?sign=1739301696-bbuGoxnbX3FB726FXNAqI0EGS598ioEl-0-41001576ea32085e7f85ce2d271191cf)
1.求的Mac1aurin级数展开式.[华东师范大学2006研]
解:由于,所以
,从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2148.jpg?sign=1739301696-LU6iQnFuMoN9dRb60bBKXxBlYgCKIpuI-0-805643c9b611614a63a084543292c499)
1.求在x=0处的幂级数展开式及收敛半径.[中南大学研]
解:由,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2151.jpg?sign=1739301696-U3QWrcoe5jBwp6Z8gwZPBjLkrBoQlySt-0-91a0c1694678cdca4eb83eece4f59403)
易知其收敛半径.
1.证明:当时,
在(-∞,+∞)上一致收敛.[东北大学研]
证明:易知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2155.jpg?sign=1739301696-MbyTTQjzDdLmfzsj2qrPMHKFYMQqcEC4-0-69122472a4a94638476d490083c822f3)
令,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2157.jpg?sign=1739301696-t4h3yBjDjpSHOZJUoZA5QAfBkWq27Hwv-0-2869da6d1e46bfeead0cbecbf0ca3994)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2158.jpg?sign=1739301696-NYsu5OBNgfxERmAUtdP04Qj7rkyTVPxZ-0-afb4efd4fee924e57d7ec4ffb1ac102f)
故
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2159.jpg?sign=1739301696-hMC1kcTOWSAP5jEOiWXjWr6T8FLaZse6-0-0a6f28e0aae3f8df2317e51dcd555290)
所以在(-∞,+∞)上一致收敛.
1.设f(x)在区间[a,b]上连续,f(x)>0.证明:函数列在[a,b]上一致收敛于1.[华东师范大学研]
证明:因为f(x)在区间[a,b]上连续,所以存在,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2163.jpg?sign=1739301696-rDnncnbA4WrjdtYqL9VSSgv07jTz4Lag-0-a49004c9e6c5fb0026e59d327a1b3d59)
,从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2164.jpg?sign=1739301696-RbGXPUqjSO8XsokYqKSmQ9fkNvmLWlTW-0-a12b77799fac4b21570dd08565165005)
因为,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2167.jpg?sign=1739301696-93pVOs0Qb0RjQN3LPirUXgMajmDYLZBD-0-e9100f7a33872bb7c351492bb4285ac7)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2168.jpg?sign=1739301696-Kr3VlEEIYy62UW16qEEZkUa45I61FvkO-0-0960bd890f35a57ab36638db2578108c)
即函数列在[a,b]上一致收敛于1.
1.设函数un(x)在闭区间[a,b]上连续(n=1,2,3,…),级数在开区间(a,b)内一致收敛.证明:函数
在闭区间[a,b]上一致连续.[北京交通大学2006研、深圳大学2006研]
证明:由于级数在开区间(a,b)内一致收敛,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2174.jpg?sign=1739301696-6uiZ1HYkfCjwUFEJHLB1ur5npzjzv7OY-0-b5cec3f376e1768f0bd3dd541ab673d3)
由于函数在闭区间[a,b]上连续(n=1,2,3,…),在上式中分别令
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2177.jpg?sign=1739301696-7jGqKP9VHBghlV7EDR1cl3ps2sVwLABt-0-35c7548c209896be8b111bf499b63955)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2178.jpg?sign=1739301696-B3g3vY4ruKPy94RDyCwUfoW0dFX27Tp6-0-803ef4ebd2d07c6116e461aa16409467)
即在闭区间[a,b]上一致收敛.故函数
在闭区间[a,b]上一致连续.
1.设函数f(x)在(-∞,+∞)上有任意阶导数,且导数函数列在(-∞,+∞)上一致收敛于
.证明:
[南开大学2006研]
证明:由于在(-∞,+∞)上一致收敛于φ(x),从而
即
在(-∞,+∞)上一致收敛,由一致收敛函数列的可微性质得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2187.jpg?sign=1739301696-o6n6fsKgYydpXQG3EJzCJt0KzrLcNVm9-0-0919a9a6b12592a5fb9bcc005e148c9a)
于是.又因为φ(0)=1,所以C=1,故
1.设,计算积分
[江苏大学2006研]
解:由于,又
收敛,故由Weierstrass判别法知
在
(-∞,+∞)上一致收敛.从而由一致收敛函数项级数的可积性知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2195.jpg?sign=1739301696-RiVrsKKq8mh1nB8UAOIIE4bD24av2qJv-0-f54f7741c818126b629e2d24615c4d2e)