![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739302267-S7FiD1Wl73aOPxejsmwMcEZzNrkZjiPl-0-91e9a01e1681bca31a34eb935b432c41)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739302267-ZqlTAy5C6ZOE8Wz3HjaVX87CulLz8ABb-0-cbb0cbeb34c98aa99ae79d7f5ae8f7cc)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739302267-eGrEKGtPMY5ftiyuDKxNvpfD0SSu9GG5-0-c80b923933c36c79b00a810e0d2f03c1)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739302267-VCWV0MzBxba5FBGrVwcWMjZOmk5Ovo2P-0-c716546f8293cd62f4980f7e32c0d90a)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739302267-8V9yIWG1Uq1VpAp0VJkdb3R8BO27U0td-0-029876200030a2894cb9fb11c58a63f6)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739302267-RM0Ffl7kYYhOy4SUneZeVPpfQAytnb8X-0-da98acec303b9fd66216db4e8826f50e)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739302267-6YbhOcRZEU6pc9GqLqVRK9P3mwBeSI5u-0-f7aaaf03617f16fa48659347f45b3285)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739302267-lX3m1KRM5fESjkHW2pkID7Pddf5Pwofm-0-abe5a33706fdc7440a5f3b725c91f3a3)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739302267-9gBkbUtLBG4NUvueydxQghR3dgerXBVr-0-bc2a521ab21988a03da743ad7d1adb9b)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739302267-BXavk9YEWvkfLZtAPO6gneVsM32GlkFS-0-72edcf77d76c91d2a5798acfe08bb2cb)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739302267-QLdKu6b4mLLMQYR3qjNz5ASbpkF5K1Fm-0-f16951b6470f2fb6bcfb9c0ef809f571)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739302267-qK1U7rUg3hB65h7wL90DrMLGoKcc4Z6b-0-2255e11e7eb5e3b4cd18bf3c50e92430)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739302267-nQXFGkBBWm9Xqzlti6r9Xm4zVXSADNfu-0-6a25f8af0cd3d51e88425fc739611c89)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739302267-b86gI0iXOc7miViBOa0H991lf6Es6yQK-0-0a9914d5567ea72e6b58e0da8fa20eb4)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739302267-bmsecGmj07gUKm7q61XYyrBLHZ3k8Qw2-0-eeb52f5131ddb7f7f8d1b53adbb2806a)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739302267-UKiZHf7F24FRyIDN06e3gzjKhwOwwLO7-0-f1834f083131f32082f74ff336899ce9)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739302267-QzhP3eF04ASShZmF7urY0uvYgLgfQgaP-0-565a23cf87b61cf272da09c106e2a3c6)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739302267-R7zOjE2CUn4Zv3hH2wOyXU1kZ3EUbT0Q-0-3063bdd5a783ec1fd3e51b061018ba07)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739302267-iTak7ew5Ls343S1TtVWegKP7b3hZ8gAP-0-b539a02f794838e6b6351d44fd62c747)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739302267-zVZLhlzrNCXqflw0gHjRL9VTsl5Ghiop-0-de44a835faac6bb9b470ae469b626fb5)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739302267-E0WtbRzSir4JyONIS7ZosuhblpMhxURf-0-aa9a1bbe91fa39462f6e74bf9fb7b229)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739302267-2Xpa7jQtudoLpmXMoaRMGIhxDOI0mPqN-0-af16ee8245cda6548c428f70aa46bba2)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739302267-twUQvt2e98I5wO56H5Hzy58YojRZCeAv-0-2537370c1341d0bef503ed820b53b6f5)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739302267-E77bdM7YBR5pd0XeFdWt3pAdsQBaACVf-0-d3a870f1daf067619fbd3da701eab5f9)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739302267-yAEzYJPrM28QYbSAWvN4USArp75Itroy-0-55ae0fa6a5f9b144a7e3900cca8da79d)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739302267-6d2v6Mm3iDbJKGgulUKM9YTDplC8zscx-0-7fc0d1dae4b79f9854c8ce5738944921)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739302267-SXZL6NQNu6vcxKerjbR8M2gdcWfPSGAE-0-5628e0c3ffc420d94761de69c8bb7892)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739302267-cAGU1XmcIH0wk4M9weYcDn29mBsAZgq9-0-2e3ae401aecac10acfdfa6d5b4e6f8a5)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739302267-H8APxok3o4Gsx5tCOGeOE20yop5YubW1-0-e2cffa682563d8c311554b243324adb3)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739302267-RIEd3I4gQxLhmkz2WiAu2ek5MsRrMlyw-0-05f9aea97d6086cc759bad3bb4122d29)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739302267-1UXHtAxMRE7OQF9qb0Hd2oajHtaBOsNv-0-5a42bb5ad66c9b84bdfbb6e3e1d6f78b)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739302267-qoqNRRqvUCNCkNxsBlJcOtL3WdYngQwG-0-dad8890675c518a4f9347bd710ed4891)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739302267-O0TMNxOUTsFMdAbqb9x3U7rDkKW1m1Nh-0-5f449268b231fd2a77e45124884cecb9)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739302267-5NTwycoRvzTLqP51zKyKmBjS7szkMcnd-0-f5a5db656d1afe92482cb78103ccb4d9)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739302267-C4tkxgaXbPvNBK3ySkH83bqSQYbTmMMp-0-94d00deb7fc3f98d98c9e16339c4f613)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)