![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1738868711-rPW4ug1SXJaJ5m6nJrmJCgpRATEfDFpv-0-8ce505c2aeac546d56a1aa6fd68a95a2)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1738868711-e1Cjl369YsuUvQN5RJHdgtPhijNs0ICw-0-bee50ffe3aff5ff816549a03d24c72d2)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1738868711-kXE9crRgBgYD5SDylONX7HAkQWkJ0IHp-0-800158a19dccc13ce74bd9e9731d3815)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1738868711-gmH2rwO3vSqBe0YBvHIAWQPe1pXeKQHZ-0-ce7794cb3675d79efa608f4732df93f6)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1738868711-EpNFYXGEp5qPU1Mbf1NgSaSwMESIGH7N-0-22c77e0bb01a7756c2f49ffb83bb6d24)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1738868711-FSVDv22tnxiMBSqh8yc5L7Uy2B8oFSYs-0-28059a5ad913966d0f685afe77387bb8)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1738868711-z290R25G50uSncBBe4WZhbJnsld0GiXJ-0-8c554fff88d7f6b3f8fbed31bc1fdfd8)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1738868711-GHtgraG7O7x9EeYZZa1UOipCUlplE2Ju-0-3e81841b63d1d69ddd162635eb68490f)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1738868711-yn5UOER46hICwXSsTQI1ZZCScYYiPbeV-0-b553818520c2cb2ca702cd39bab83272)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1738868711-LYDIktKnI7TTeXKuWBNsNPrTHUOAHLmx-0-35856e8f4ccff0d45841c44448c53bf4)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1738868711-cKTKoiufaJOX8tMt14FdcnIKx1qv0LtE-0-679a8fa15074c30579e77d46af56c758)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1738868711-3LnpMPsvGeAgfDujYFOrA086A41ZdKZK-0-f491aaaaad5eea96bb9d66e9e5edfc34)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1738868711-yKhDLWgKWin7T2wi8RjZufkBGHe7toP8-0-e41fd1220545e51e721e44caebf374b1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1738868711-xvwKldGscg0qsBtKFvMbFk2oCdWsQiJD-0-892773e1ef18fd6188d44215d426511c)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1738868711-UCSUjUMEzYbJjRMb7EHvv5yJ6zW5xHGP-0-50326cf867b30ae0a52681497d6cb3db)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1738868711-qAUk44Z33ru0R3iQLas6fVZM43wdFsCs-0-74e15a8c507c342469b2100874dbf7a5)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1738868711-dqksZVusPUHa6Y6PYDVO18DuJ3z31fzl-0-441eaa267ca6f8e2917e4e9dbf68884e)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1738868711-NxpPvauexKt9CNhqZH9kHdL9L4eA722n-0-4a4fde107a7dfb145eb31fec4569cd9b)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1738868711-G8iGRqcOeomKbSV6udqHHxOdUaFcUhSo-0-b267923861a11d4f009ff9c16f8f92aa)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1738868711-X6BeBfj7PA8oR9TdxUdncMLnkWXhATGD-0-e710d5bf61fc097f1137a6f2ed948c56)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1738868711-VNoJjJ8SKcQEfALzeCHy1kcdDN5cH0dY-0-88d7d09d7963edb2865588b61e3aabcf)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1738868711-jW7djTDadlbUC4y8KkonJRqPB8kyA5Mi-0-4bfc40c3c82151d148fc8f9d76ec04b2)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1738868711-MOS4QnAsnchnGY7y0SWgh0sN1Btsd7pp-0-5839b29972d9e4b0d69c1f8f41e853d2)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1738868711-9Mqn6OYr32RK3oIqtcefH7v51GYEzPpm-0-c5238486e3d56b905a37e461d54c8c93)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1738868711-tETq1yhw10KPFXRYDCDF6s5wkmDxXEMn-0-a040284ca0fcb27a8972d35d05826c64)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1738868711-a2rbaS9yIrlWmXbxzgGu0hDgQtxodVLl-0-e1df2a9c3456723597dadbc9309b2d75)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1738868711-eWU43WNaTxaTO3Rlig7qmMFxijxxxOE4-0-c1500893cc284e4451b788c6e7ad93cb)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1738868711-W7sMylE11aU1nYCbsvcOlGJPyqvZAq4y-0-5526f9bc3233c90ba54c8b20e0425362)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1738868711-pDIS9F31coVx2DB244ZYtIM51v11yuSq-0-b10bb15543571acacf915a224093715a)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1738868711-jd3HonAGx6E17CsEF7ofqYkIJZC1hHuG-0-dfb32bdde4b2a74cfe4d0ae7f042eff6)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1738868711-DZHn9l6WahP0R6RBfMLHXwjsXQrwhfjo-0-d803c5f1b4a80c21b4e9332bcc658936)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1738868711-hxAaP1sQaQgdwoeZFvQbdhIo4znRNZ2h-0-16e87b5602f4e6ec4f98908c71840a76)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1738868711-tBYyfI9h9aF1YsCjtK9G4XgxR5dmQrlw-0-50c9cbeabfe342ef9514fabcac8fcfe0)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1738868711-Hq4Z3c8tUH4cuG3LJIkhVz7BQeXl1qiD-0-ef40a1ec69d6a691808435110ac8f848)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1738868711-jXPXLhs1eLI636nLA5wqXBoqR07Zamwx-0-cdab435c6c5931855f87c7052c7db36e)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)