![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
12.2 课后习题详解
§1 富里埃级数
1.证明:
(1)1,cosx,cos2x,…,cosnx,…
(2)sinx,sin2x,sin3x,…,sinnx,…
是[0,π]上的正交系;但1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…不是[0,π]上的正交系.
证明:(1)因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2265.jpg?sign=1739301097-3qUj7wB9P58YDxt4mUV82qE8oxPcsddx-0-c9ac00eb86f43d442d27aca458446494)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2266.jpg?sign=1739301097-e5eLXoQZEyQFAYmj2mK7g2knBKgJWAIp-0-b58b20adbeb398b16cdab8df2688ce71)
则1,cosx,cos2x,…,cosnx,…是[0,π]上的正交系
(2)因
则sinx,sin2x,sin3x,…,sinnx,…是[0,π]上的正交系
又则1,cosx,cos2x,sin2x,…cosnx,sinnx,…不是[0,π]上的正交系.
2.证明:sinx,sin3x,…sin(2n+1)x,…是上的正交系,写出它的标准正交系
(即不仅正交,而且每个函数的平方在上的积分为1),并导出
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2271.jpg?sign=1739301097-acadUFJFBWzwSkyCMVojuQjVkcPEWMgU-0-2aab855d94817c53fb74517507a9478e)
是[0,1]上的正交系.
证明:因
则sinx,sin3x,…sin(2n+1)x,…是上的正交系
又由得
则在上它的标准正交系为
又
则是[0,l]上的正交系.
3.设f(t)是周期为2π的方波,它在[﹣π,π]上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2280.jpg?sign=1739301097-Mx3RkgTaSh2gIGp3jZ1Zu6x52FaIcoD9-0-a89d380596940b46c16ebcece129603f)
将这个方波展开成傅里叶级数.
解:因又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2282.jpg?sign=1739301097-mNy9eQnv9DAWzEANvs5RsBDbPm3XO4AU-0-aa0c9a4d8531cd4a7ac420636f237d52)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2283.jpg?sign=1739301097-sMvlDZMNQHXEbuvzWJXXBU3zSGR6U71P-0-fef47c4a559165e31e4d3e8bb5a474bb)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2284.jpg?sign=1739301097-fVRUNFl7HjHVhBDLLohcbN3LL1ygjbKh-0-1c2b695939b3f207227c12d597de46c5)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2285.jpg?sign=1739301097-3ywCHNOb8ERDNuITIzmTIzsVoLy3xpp5-0-2bd68eba427d4221a8075efe7b474778)
4.设f(t)是周期为T的半波整流波,它在上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2287.jpg?sign=1739301097-QhNUUaVHqJG5h8r5mjyBYyrnAdJ7UwRy-0-71619a69d4b6804462bba3a3a77f2b61)
将这半波整流波展开成傅里叶级数.
解:因
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2290.jpg?sign=1739301097-dFA50xD68t2KUuDMp1fXUyXysBLbBpV6-0-fb0dab0b5cb7ca20682b0c6d0f2208f7)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2291.jpg?sign=1739301097-x3FEl03b8e8B03TaHViQedYNt7nKaWme-0-f470234012b596635ae718839a510b0d)
5.设f(t)以2π为周期,在[-π,π]内
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2292.jpg?sign=1739301097-93E4kWttSNGllcs6Hz8A3I5ftNOxReb9-0-79a3e10bec17a73587c719e1c68f5f26)
把f(t)展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2294.jpg?sign=1739301097-yKtoVlC4mN4QnwOAJoydvSLyMcNZN2TK-0-aedecc05d94d7114aba8c69d91dda592)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2295.jpg?sign=1739301097-AuePwmqYgi8qmqBrlpEfG16xH7v5MBjd-0-87714c957aa131ff28d2fc79345ccef5)
6.设f(t)是周期为2π、高为h的锯齿形波,它在[0,2π]上的函数表示式为,将这个锯齿形波展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2298.jpg?sign=1739301097-AWgpL0pJixsh6iLAFw8uBlGhEWvl2Mim-0-c6634c84665126d894a0420af69004da)
则
7.将宽度为τ、高为h、周期为T的矩形波展开成余弦级数.
解:在一个周期内矩形波函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2301.jpg?sign=1739301097-TnibSC1dl68ODZkFpF5TiQaMaJ5zttRy-0-f83985cf961faa8e0e986a76c54a7e8a)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2303.jpg?sign=1739301097-WVLy7gU4mgYv06QvXXVB74Uy8XQolrjO-0-0fa567ca26bc0c4f532d015fc09549f5)
8.写出如图12-1所示的周期为T的三角波在内的函数表达式,并将它展开成正弦级数.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2305.jpg?sign=1739301097-PYSSSVAAOXErnwioCnsdogiIHT96KUuX-0-639be6e43e4d9719435e873bf0b6fcff)
图12-1
解:如图所示的周期为T的三角波在的函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2307.jpg?sign=1739301097-bvizScJnUhloBox4M2xavWV0927aq46l-0-ee4c01e66ab094046bb6ddc86ba58ac3)
先把f(t)延拓成上的函数,再据题意,还必须把它延拓成奇函数,于是a0=ak=0
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2309.jpg?sign=1739301097-Mbpvv9OLuzgzyfqIqjTJPJfopxrfGmtl-0-ead388fdb97a0c49d95533cd196c943f)
则
9.将f(x)=sgn(cosx)展开成傅里叶级数.
解:因f(x+2π)=sgn[cos(x+2π)]=sgn(cosx)=f(x),则f(x)是以2π为周期的周期函数
又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2312.jpg?sign=1739301097-MfoOOfgwJKY2ywenAzlTgdc8doej47pS-0-ea7c5519bec65fd4fd652e3f55763018)
则f(x)在(-∞,+∞)上可展为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2313.jpg?sign=1739301097-tOxM1wi0q7oVm4BKL8AjJ6kN0SxxKySo-0-b03e1ff9bfa906c5a35d1bafc7cf5fb5)
10.应当如何把区间内的可积函数f(x)延拓后,使它展开成的傅里叶级数的性状如下:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2315.jpg?sign=1739301097-W6qBkpgUzNNNJtMKe8smRdWvLoZFh7xi-0-d5c8cbbf13872ccb35328b3f7141d630)
解:因展开式中无正弦项,则f(x)延拓后应为偶函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数a2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2317.jpg?sign=1739301097-SFesV28gSFCl1v65ud4SCLpskGuPL4JG-0-49d91b30969ee8b5e716c633600991f1)
则
在左端前一积分中作变量代换,令x=π-t则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2319.jpg?sign=1739301097-dKu3NeFutnBGBxTcS9bVB3fVlHKWLbNp-0-858bd04c628e5d5811344729e1111cae)
要使上式成立,则必须当时.有f(π-x)+φ(x)=0即φ(x)=-f(π-x)
于是就求出了延拓后的函数在内的表达式为-f(π-x)
又延拓后的函数为偶函数,则它在的表达式为f(-x),在
的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2324.jpg?sign=1739301097-2eEKghgNNLZnSUprWxHC277uQhqUe9Gc-0-4c0eba56bd156036d5e736d299683b5d)
11.同上一题,但展开的傅里叶级数形状为:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2325.jpg?sign=1739301097-m9Xumj5hPQMWw1MOyzy7H3oFdiFcAEgz-0-474c359a4f416a647db1339c71a08e55)
解:因展开式中无余弦项,则f(x)延拓后应为奇函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数b2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2327.jpg?sign=1739301097-6FPOFZIyEreNS0Uqbw8qFspLoyjZPhio-0-4d0c7c4b6b40ec6c22983491b1fe866d)
则
在左端前一积分中作变量代换,令x=π-t
则
要使上式成立,则必须当时.有-f(π-x)+φ(x)=0即φ(x)=f(π-x)
于是就求出了延拓后的函数在内的表达式为f(π-x)
又延拓后的函数为奇函数,则它在的表达式为-f(-x),在
上的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2334.jpg?sign=1739301097-FsDW8yNtMOR3Bmfx7356R24v6lkpMQ6Q-0-e074fc7ee16d2df56c107a0fc858cf5a)
12.设f(x)可积、绝对可积,证明:
(1)如果函数f(x)在[-π,π]上满足f(x+π)=f(x),那么a2m-1=b2m-1=0
(2)如果函数f(x)在[-π,π]上满足f(x+π)= -f(x),那么a2m=b2m=0
证明:(1)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)=f(x)
则f(x)在[-π,π]上可积、绝对可积且以π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2336.jpg?sign=1739301097-JoY8GlGgic6gSoQqmTH7eEo9wXO1MSCQ-0-19391152d08f45a9233ed89635bcce3a)
于是
从而,得a2m-1=0(m=1,2,…)
同理,得b2m-1=0(m=1,2,…)
(2)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)= -f(x),则f(x+2π)=f(x)
于是f(x)在[-π,π]上可积、绝对可积且以2π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2339.jpg?sign=1739301097-1E3PYGvj73qH1afqgiYYnZ5KzL7y9RYe-0-a748c3c929702b71a06bb8e588b7aafd)
于是
从而,得a2m=0(m=1,2,…)
同理,得b2m=0(m=1,2,…)
13.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2343.jpg?sign=1739301097-bc5slqQrgwTnoLzIvM2pUMI7TqJaYxPg-0-26bdc91c31cb076928d63ef5775e145a)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2346.jpg?sign=1739301097-22LbKUFk3snxJMIDU6kf8IBa8roexihS-0-2c51b4a0c950721083d10d77b59f896e)
同理,得bn=-βn(n=1,2,…)
14.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶系数分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2350.jpg?sign=1739301097-MBvTSGWb3fOrvhK2Z1yzyWh7XvyRz7FM-0-ca079fa02a2ac45b15027c89659f2ebf)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2351.jpg?sign=1739301097-7IBcxT7PYOaAxXWogiAME2YEjRUfpufJ-0-39cfbdc2906d6204390644f36e304c59)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2354.jpg?sign=1739301097-Gg0JgbXteLjcfPOd9hJx3Qfg43NJxzRv-0-023d51123b30185cd5a24c8d79676ccf)
同理,得bn=βn(n=1,2,…)
15.设f(t)在(-π,π)上分段连续,当t=0连续且有单侧导数,证明当p→∞时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2355.jpg?sign=1739301097-NNm1FfV63MX4lh3FmwJWIU9aq5nqDBQj-0-567f4e91524f643d32148fb32867ca49)
证明:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2356.jpg?sign=1739301097-0zH766ryGgY1V61XdjKNtYaKD6FfHkT6-0-d93c107eed675771e218880a39a192c6)
在右端前一积分中令t=-x,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2357.jpg?sign=1739301097-vfqXnEPGykFeQZodLTk5KJjRmt65XQNA-0-afd85a7f61e1b663594151a87674245d)
代回原式,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2358.jpg?sign=1739301097-hKFYuy1sKtTJyPYMIX7nYMcRzyKXaPNW-0-0d03a9fa8703f8e9cc0a7ba10944dbc1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2359.jpg?sign=1739301097-GcN6hh5u9RBuwOgo53e2JIdauIvPEMb4-0-52856da11b9374926d53130cc6752ed1)
下证
因
对于
因f(t)在(-π,π)上分段连续,在(δ,π)上连续,则
在(δ,π)上分段连续因而可积,则由黎曼引理,得
对于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2367.jpg?sign=1739301097-Ztqz97Vh75B1fgv8F5YapLwDL71oHRkl-0-4b2f1856a8a48a705ac91cfd8d9d66f1)
因补充定义,t=0时,函数
的值为0,则
是[0,δ]上的连续函数
又f(t)为(-π,π)上的分段连续函数,则在[0,δ]上分段连续,因而可积,则由黎曼引理,得
因f'(+0),f''(-0)存在,则存在
补充定义,t=0时,函数值为f'(+0)+f'(-0),则
是[0,δ]上的分段函数,因而可积,于是由黎曼引理,得
综上可得,当p→∞时,
§2 傅里叶变换
1.设f(x)在(-∞,+∞)内绝对可积,证明在(-∞,+∞)内连续.
证明:对总有A',A'',使得ω∈[A',A'']
由于
后者收敛且不含参量ω,这表明积分在[A',A'']上一致收敛,据一致收敛积分的连续性,得
在[A',A'']上连续,从而在点ω处连续,由ω的任意性,得
在(-∞,+∞)内连续.
2.设f(x)在(-∞,+∞)内绝对可积,证明
证明:由f(x)在(-∞,+∞)内绝对可积,得对于任给的ε>0,存在A>0,使有
设f(x)在[0,A]内无暇点,则在[0,A]中插入分点0=t0<t1<…<tm=A,并设f(x)在[tk-1,tk]上的下确界为mk,于是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2387.jpg?sign=1739301097-TpXVkHrEBa7TsIeSgrnc1lIkCYKYuvdm-0-26fd5bb79107b492e425fa172f59bba0)
从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2388.jpg?sign=1739301097-i8YRaz4CcTziYn4Vdb40HOM7rvVcS5gc-0-71b93a53f9050deb1c7b319679d2e9a7)
其中ωk为f(x)在区间[tk-1,tk]上的振幅,△tk=tk-tk-1
由于f(x)在[0,A]上可积,故可取某一方法,使有
对于这样固定的方法,为一定值,因而存在δ>0,使当ω>δ时,恒有
于是对上述所选取的δ,当ω>δ时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2392.jpg?sign=1739301097-JDXEEpVzONbp1CmwO53rNR85FJUQaAjW-0-ece9caead74ce8b88199300cce289d69)
其次,设f(x)在区间[0,A]中有瑕点,为简便起见,不妨设只有一个瑕点且为0,于是对任给的ε>0,存在η>0,使有
又f(x)在[η,A]上无瑕点,故应用上述结果可得存在δ,使当ω>δ时,恒有于是当ω>δ时,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2395.jpg?sign=1739301097-WbvsQH7r4vEc3UiIb71KgAt2Fpry6Ziy-0-1434429a3babcd58862d8b130e62b260)
即
同法,得当f(x)在(-∞,+∞)内绝对可积时,均有
同法可证得当f(x)在(-∞,+∞)内绝对可积时,
于是
3.求下列函数的傅里叶变换:
(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2400.jpg?sign=1739301097-r1dn0iVCF0NOz7rmTYgyHsYgbtuV0cCo-0-a3718ae59487b14cbd15d7ba4755b294)
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2401.jpg?sign=1739301097-RZ1htxZnigLE97d1jAJ7uexgmD5pOUhi-0-a64732c9b6da13987a262c408190badc)
解:(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2402.jpg?sign=1739301097-jkrJ75QniRAOQdbXtmzsHqoiyGU4k0e3-0-cfb97b8aab9211a0522649e7a4952385)
因为(-∞,+∞)内的连续函数,则
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2405.jpg?sign=1739301097-KLOzqQMicvt1sehwx7aU7lpYTey50ILS-0-a983a629f6e56bbc1cd5a81491d7d5b5)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2406.jpg?sign=1739301097-3ZlAWcCTSiBqc5KGoaNnQEnCaq0Owk4d-0-ad4f225c92ed6cf0dfdc17e617b5ea3f)
因为(-∞,+∞)内的连续函数,则